Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(5^(4)*b^(-10))^(-6)=?
Choose 1 answer:
(A) 
(b^(60))/(5^(24))
(B) 
5^(4)*b^(60)
(C) 
5^(24)*b^(60)

Select the equivalent expression.\newline(54b10)6=? \left(5^{4} \cdot b^{-10}\right)^{-6}=? \newlineChoose 11 answer:\newline(A) b60524 \frac{b^{60}}{5^{24}} \newline(B) 54b60 5^{4} \cdot b^{60} \newline(C) 524b60 5^{24} \cdot b^{60}

Full solution

Q. Select the equivalent expression.\newline(54b10)6=? \left(5^{4} \cdot b^{-10}\right)^{-6}=? \newlineChoose 11 answer:\newline(A) b60524 \frac{b^{60}}{5^{24}} \newline(B) 54b60 5^{4} \cdot b^{60} \newline(C) 524b60 5^{24} \cdot b^{60}
  1. Apply Power Rule: Apply the power of a power rule.\newlineThe power of a power rule states that (am)n=amn(a^m)^n = a^{m*n}. We will apply this rule to both 545^{4} and b10b^{-10} separately.\newline(54b10)6=(54)6(b10)6(5^{4}*b^{-10})^{-6} = (5^{4})^{-6} * (b^{-10})^{-6}
  2. Multiply Exponents: Multiply the exponents.\newlineNow we multiply the exponents for each base.\newline(54)(6)=54(6)=524(5^{4})^{(-6)} = 5^{4*(-6)} = 5^{-24}\newline(b(10))(6)=b10(6)=b60(b^{(-10)})^{(-6)} = b^{-10*(-6)} = b^{60}
  3. Combine Results: Combine the results.\newlineWe now have two separate terms, 5245^{-24} and b60b^{60}. We combine them to form the final expression.\newline(54b10)6=524b60(5^{4}*b^{-10})^{-6} = 5^{-24} * b^{60}
  4. Simplify with Negative Exponent: Simplify the expression with negative exponent.\newlineThe term 5245^{-24} can be rewritten as 1524\frac{1}{5^{24}} because a negative exponent indicates the reciprocal of the base raised to the positive exponent.\newline524×b60=(1524)×b605^{-24} \times b^{60} = \left(\frac{1}{5^{24}}\right) \times b^{60}
  5. Rearrange Expression: Rearrange the expression.\newlineWe can rearrange the expression to match the answer choices.\newline1524\frac{1}{5^{24}} * b60b^{60} = b60524\frac{b^{60}}{5^{24}}
  6. Match with Answer Choices: Match the expression with the answer choices.\newlineThe expression b60/(524)b^{60} / (5^{24}) matches answer choice (A)(A).

More problems from Multiplication with rational exponents