Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.\newline(3366)3=(3^{3}\cdot6^{6})^{-3}=?\newlineChoose 11 answer:\newline(A) 139618\frac{1}{3^{9}\cdot6^{18}}\newline(B) 61839\frac{6^{18}}{3^{9}}\newline(C) 39618\frac{3^{9}}{6^{18}}

Full solution

Q. Select the equivalent expression.\newline(3366)3=(3^{3}\cdot6^{6})^{-3}=?\newlineChoose 11 answer:\newline(A) 139618\frac{1}{3^{9}\cdot6^{18}}\newline(B) 61839\frac{6^{18}}{3^{9}}\newline(C) 39618\frac{3^{9}}{6^{18}}
  1. Apply negative exponent rule: Apply the negative exponent rule.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We will apply this rule to the entire expression.\newline(3366)3=1(3366)3(3^{3}*6^{6})^{-3} = \frac{1}{(3^{3}*6^{6})^{3}}
  2. Apply power of product rule: Apply the power of a product rule.\newlineThe power of a product rule states that (ab)n=an×bn(ab)^n = a^n \times b^n. We will apply this rule to the expression inside the parentheses.\newline1(33×66)3=1(33)3×(66)3\frac{1}{(3^{3}\times6^{6})^{3}} = \frac{1}{(3^{3})^3 \times (6^{6})^3}
  3. Simplify exponents: Simplify the exponents.\newlineWhen raising a power to a power, you multiply the exponents. We will do this for both terms.\newline1(33)3×(66)3=133×3×66×3\frac{1}{(3^{3})^{3}} \times (6^{6})^{3} = \frac{1}{3^{3\times3}} \times 6^{6\times3}
  4. Calculate exponents: Calculate the exponents.\newlineNow we will calculate the exponents for both 33 and 66.\newline1(33×3)×(66×3)=1(39)×(618)\frac{1}{(3^{3\times3})} \times (6^{6\times3}) = \frac{1}{(3^{9})} \times (6^{18})
  5. Write final expression: Write the final expression.\newlineThe final expression is the reciprocal of the product of 33 to the 99th power and 66 to the 1818th power.\newline1/(39618)1 / (3^{9} * 6^{18})

More problems from Multiplication with rational exponents