Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.\newline(24z3)5=?(2^{-4} \cdot z^{-3})^{5}= ? \newlineChoose 11 answer:\newline(A) 2z22z^{2}\newline(B) 220z152^{20} \cdot z^{15}\newline(C) 1220z15\frac{1}{2^{20} \cdot z^{15}}

Full solution

Q. Select the equivalent expression.\newline(24z3)5=?(2^{-4} \cdot z^{-3})^{5}= ? \newlineChoose 11 answer:\newline(A) 2z22z^{2}\newline(B) 220z152^{20} \cdot z^{15}\newline(C) 1220z15\frac{1}{2^{20} \cdot z^{15}}
  1. Apply power of power rule: Apply the power of a power rule.\newlineThe power of a power rule states that (am)n=amn(a^m)^n = a^{m*n}. We will apply this rule to both 242^{-4} and z3z^{-3}.\newline(24z3)5=245z35(2^{-4}*z^{-3})^5 = 2^{-4*5} * z^{-3*5}
  2. Perform exponent multiplication: Perform the multiplication for the exponents.\newlineNow we multiply the exponents inside the parentheses by 55.\newline2(4×5)×z(3×5)=2(20)×z(15)2^{(-4\times5)} \times z^{(-3\times5)} = 2^{(-20)} \times z^{(-15)}
  3. Rewrite using negative exponent rule: Rewrite the expression using the negative exponent rule.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We will apply this rule to both 2202^{-20} and z15z^{-15}.\newline220z15=12201z152^{-20} \cdot z^{-15} = \frac{1}{2^{20}} \cdot \frac{1}{z^{15}}
  4. Combine fractions: Combine the fractions.\newlineSince both fractions have a numerator of 11, we can combine them into a single fraction.\newline1220×1z15=1220×z15\frac{1}{2^{20}} \times \frac{1}{z^{15}} = \frac{1}{2^{20} \times z^{15}}

More problems from Multiplication with rational exponents