Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

((1)/(k^(-8)*k^(5)))^((5)/(3))

(1)/(k^(5))

k^(5)

(1)/(root(5)(k))

root(5)(k)

Select the equivalent expression.\newline(1k8k5)53 \left(\frac{1}{k^{-8} \cdot k^{5}}\right)^{\frac{5}{3}} \newline1k5 \frac{1}{k^{5}} \newlinek5 k^{5} \newline1k5 \frac{1}{\sqrt[5]{k}} \newlinek5 \sqrt[5]{k}

Full solution

Q. Select the equivalent expression.\newline(1k8k5)53 \left(\frac{1}{k^{-8} \cdot k^{5}}\right)^{\frac{5}{3}} \newline1k5 \frac{1}{k^{5}} \newlinek5 k^{5} \newline1k5 \frac{1}{\sqrt[5]{k}} \newlinek5 \sqrt[5]{k}
  1. Simplify Exponents: Simplify the expression inside the parentheses by adding the exponents of kk. When multiplying powers with the same base, we add the exponents. So, k8×k5=k8+5=k3k^{-8} \times k^{5} = k^{-8 + 5} = k^{-3}. The expression becomes (1k3)53\left(\frac{1}{k^{-3}}\right)^{\frac{5}{3}}.
  2. Apply Quotient Rule: Apply the power of a quotient rule.\newlineThe power of a quotient rule states that (a/b)n=an/bn(a/b)^n = a^n / b^n.\newlineSo, ((1)/(k3))(5)/(3)=1(5)/(3)/(k3)(5)/(3)((1)/(k^{-3}))^{(5)/(3)} = 1^{(5)/(3)} / (k^{-3})^{(5)/(3)}.
  3. Simplify Numerator: Simplify the numerator.\newlineAny number raised to any power is itself if the number is 11.\newlineSo, 1(5/3)=11^{(5/3)} = 1.\newlineThe expression now is 1/(k3)(5/3)1 / (k^{-3})^{(5/3)}.
  4. Apply Power Rule: Apply the power to a power rule.\newlineThe power to a power rule states that (an)m=anm(a^n)^m = a^{n*m}.\newlineSo, (k3)(5)/(3)=k3(5)/(3)=k5(k^{-3})^{(5)/(3)} = k^{-3 * (5)/(3)} = k^{-5}.\newlineThe expression now is 1/k51 / k^{-5}.
  5. Move Base to Numerator: Simplify the expression by moving the kk term to the numerator.\newlineWhen we have a negative exponent, we can move the base to the opposite side of the fraction to make the exponent positive.\newlineSo, 1/k5=k51 / k^{-5} = k^{5}.

More problems from Multiplication with rational exponents