Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

((1)/(a^(-6)*a^(3)))^((5)/(3))

a^(5)

(1)/(a^(5))

(1)/(root(5)(a))

root(5)(a)

Select the equivalent expression.\newline(1a6a3)53 \left(\frac{1}{a^{-6} \cdot a^{3}}\right)^{\frac{5}{3}} \newlinea5 a^{5} \newline1a5 \frac{1}{a^{5}} \newline1a5 \frac{1}{\sqrt[5]{a}} \newlinea5 \sqrt[5]{a}

Full solution

Q. Select the equivalent expression.\newline(1a6a3)53 \left(\frac{1}{a^{-6} \cdot a^{3}}\right)^{\frac{5}{3}} \newlinea5 a^{5} \newline1a5 \frac{1}{a^{5}} \newline1a5 \frac{1}{\sqrt[5]{a}} \newlinea5 \sqrt[5]{a}
  1. Simplify inside parentheses: We start by simplifying the expression inside the parentheses before applying the exponent.\newline(1)/(a6a3)(1)/(a^{-6}*a^{3}) simplifies to (1)/(a6+3)(1)/(a^{-6+3}) because when you multiply powers with the same base, you add the exponents.
  2. Simplify exponent inside parentheses: Now we simplify the exponent inside the parentheses.\newline(1)/(a(6+3))(1)/(a^{(-6+3)}) simplifies to (1)/(a(3))(1)/(a^{(-3)}) because 6+3-6 + 3 equals 3-3.
  3. Apply exponent to expression: Next, we apply the exponent (5/3)(5/3) to the expression (1)/(a3)(1)/(a^{-3}).((1)/(a3))(5)/(3)((1)/(a^{-3}))^{(5)/(3)} simplifies to (1)(5)/(3)/(a3(5/3))(1)^{(5)/(3)}/(a^{-3*(5/3)}) because when you raise a power to a power, you multiply the exponents.
  4. Simplify exponent of a: We simplify the exponent of a. a(3(5/3))a^{(-3*(5/3))} simplifies to a(5)a^{(-5)} because 3-3 times (5/3)(5/3) equals 5-5.
  5. Simplify numerator: Now we simplify the numerator (1)(5)/(3)(1)^{(5)/(3)}. Any number to the power of any real number is that number itself, so (1)(5)/(3)(1)^{(5)/(3)} is just 11.
  6. Final expression: We are left with the expression 1a5\frac{1}{a^{-5}}. Since 11 raised to any power is still 11, and a negative exponent means the reciprocal, we can rewrite 1a5\frac{1}{a^{-5}} as a5a^{5}.

More problems from Multiplication with rational exponents