Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the answer which is equivalent to the given expression using your calculator.

(17)/(-4-sqrt18)

(136+34sqrt18)/(2)

(68-17sqrt18)/(2)

(68+17sqrt18)/(2)

(136-34sqrt18)/(2)

Select the answer which is equivalent to the given expression using your calculator.\newline17418 \frac{17}{-4-\sqrt{18}} \newline136+34182 \frac{136+34 \sqrt{18}}{2} \newline6817182 \frac{68-17 \sqrt{18}}{2} \newline68+17182 \frac{68+17 \sqrt{18}}{2} \newline13634182 \frac{136-34 \sqrt{18}}{2}

Full solution

Q. Select the answer which is equivalent to the given expression using your calculator.\newline17418 \frac{17}{-4-\sqrt{18}} \newline136+34182 \frac{136+34 \sqrt{18}}{2} \newline6817182 \frac{68-17 \sqrt{18}}{2} \newline68+17182 \frac{68+17 \sqrt{18}}{2} \newline13634182 \frac{136-34 \sqrt{18}}{2}
  1. Simplify Denominator: Simplify the denominator of the given expression.\newlineWe have the expression (17)/(418)(17)/(-4-\sqrt{18}). To simplify, we first need to rationalize the denominator.\newlineRationalizing the denominator involves multiplying the numerator and the denominator by the conjugate of the denominator. The conjugate of 418-4-\sqrt{18} is 4+18-4+\sqrt{18}.
  2. Multiply by Conjugate: Multiply the numerator and the denominator by the conjugate of the denominator.\newlineWe multiply (17)/(418)(17)/(-4-\sqrt{18}) by (4+18)/(4+18)(-4+\sqrt{18})/(-4+\sqrt{18}) to rationalize the denominator.\newline(17(4+18))/((418)(4+18))(17 \cdot (-4+\sqrt{18})) / ((-4-\sqrt{18}) \cdot (-4+\sqrt{18}))
  3. Apply Difference of Squares: Apply the difference of squares to the denominator.\newline(418)(4+18)(-4-\sqrt{18}) * (-4+\sqrt{18}) simplifies to (4)2(18)2(-4)^2 - (\sqrt{18})^2, which is 161816 - 18.\newline1618=216 - 18 = -2.
  4. Distribute Numerator: Distribute the numerator.\newlineNow we distribute 1717 to both terms in the conjugate (4+18)(-4+\sqrt{18}).\newline17×(4)+17×18=68+171817 \times (-4) + 17 \times \sqrt{18} = -68 + 17\sqrt{18}.
  5. Combine Results: Combine the results to get the simplified expression.\newlineWe now have (68+1718)/2(-68 + 17\sqrt{18}) / -2.\newlineTo simplify further, we divide both terms in the numerator by 2-2.\newline(68/2)+(1718/2)=34(1718/2)(-68 / -2) + (17\sqrt{18} / -2) = 34 - (17\sqrt{18} / 2).
  6. Check Answer Choices: Check the answer choices.\newlineWe need to find the answer choice that matches our simplified expression 34(1718/2)34 - (17\sqrt{18} / 2).\newlineThe correct answer choice is (681718)/2(68 - 17\sqrt{18}) / 2, which simplifies to 34(1718/2)34 - (17\sqrt{18} / 2) when each term in the numerator is divided by 22.

More problems from Multiplication with rational exponents