Select the answer which is equivalent to the given expression using your calculator.tanA=8413 and cosB=7572Angles A and B are in Quadrant I.Find sin(A+B).6375−828637527006375577563756321
Q. Select the answer which is equivalent to the given expression using your calculator.tanA=8413 and cosB=7572Angles A and B are in Quadrant I.Find sin(A+B).6375−828637527006375577563756321
Find sine values: Use the given values to find sinA and sinB. We are given tanA=8413 and cosB=7572. Since A and B are in Quadrant I, both sine values will be positive. To find sinA, we use the Pythagorean identity: sin2A+cos2A=1. We can find cosA using the given tanA value, as sinB0. Let's find cosA first: sinB2. We have the opposite side (sinB3) and the adjacent side (sinB4), but we need the hypotenuse for cosA. Using the Pythagorean theorem, we find the hypotenuse (sinB6) for triangle A: sinB8sinB9tanA=84130tanA=84131tanA=84132tanA=84133 Now, tanA=84134. Using the Pythagorean identity, we can find sinA: tanA=84136tanA=84137tanA=84138tanA=84139cosB=75720cosB=75721cosB=75722
Find sine B: Find sinB using the given cosB. We are given cosB=7572. To find sinB, we use the Pythagorean identity again: sin2B+cos2B=1sin2B=1−cos2Bsin2B=1−(7572)2sin2B=1−56255184sin2B=56255625−5184sin2B=5625441cosB0cosB1cosB2
Use sine addition formula: Use the sine addition formula to find sin(A+B). The sine addition formula is sin(A+B)=sinA⋅cosB+cosA⋅sinB. We already have sinA=8513 and sinB=257. We also have cosA=8584 and cosB=7572. Now we plug these values into the formula: sin(A+B)=(8513)⋅(7572)+(8584)⋅(257)sin(A+B)=6375936+2125588sin(A+B)=6375936+63751764sin(A+B)=6375936+1764sin(A+B)=sinA⋅cosB+cosA⋅sinB0
More problems from Multiplication with rational exponents