Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the answer which is equivalent to the given expression using your calculator.

tan A=(13)/(84)" and "cos B=(72)/(75)
Angles A and B are in Quadrant I.
Find 
sin(A+B).

(-828)/(6375)

(2700)/(6375)

(5775)/(6375)

(6321)/(6375)

Select the answer which is equivalent to the given expression using your calculator.\newlinetanA=1384 and cosB=7275 \tan A=\frac{13}{84} \text { and } \cos B=\frac{72}{75} \newlineAngles A and B are in Quadrant I.\newlineFind sin(A+B) \sin (A+B) .\newline8286375 \frac{-828}{6375} \newline27006375 \frac{2700}{6375} \newline57756375 \frac{5775}{6375} \newline63216375 \frac{6321}{6375}

Full solution

Q. Select the answer which is equivalent to the given expression using your calculator.\newlinetanA=1384 and cosB=7275 \tan A=\frac{13}{84} \text { and } \cos B=\frac{72}{75} \newlineAngles A and B are in Quadrant I.\newlineFind sin(A+B) \sin (A+B) .\newline8286375 \frac{-828}{6375} \newline27006375 \frac{2700}{6375} \newline57756375 \frac{5775}{6375} \newline63216375 \frac{6321}{6375}
  1. Find sine values: Use the given values to find sinA\sin A and sinB\sin B. We are given tanA=1384\tan A = \frac{13}{84} and cosB=7275\cos B = \frac{72}{75}. Since AA and BB are in Quadrant I, both sine values will be positive. To find sinA\sin A, we use the Pythagorean identity: sin2A+cos2A=1\sin^2 A + \cos^2 A = 1. We can find cosA\cos A using the given tanA\tan A value, as sinB\sin B00. Let's find cosA\cos A first: sinB\sin B22. We have the opposite side (sinB\sin B33) and the adjacent side (sinB\sin B44), but we need the hypotenuse for cosA\cos A. Using the Pythagorean theorem, we find the hypotenuse (sinB\sin B66) for triangle AA: sinB\sin B88 sinB\sin B99 tanA=1384\tan A = \frac{13}{84}00 tanA=1384\tan A = \frac{13}{84}11 tanA=1384\tan A = \frac{13}{84}22 tanA=1384\tan A = \frac{13}{84}33 Now, tanA=1384\tan A = \frac{13}{84}44. Using the Pythagorean identity, we can find sinA\sin A: tanA=1384\tan A = \frac{13}{84}66 tanA=1384\tan A = \frac{13}{84}77 tanA=1384\tan A = \frac{13}{84}88 tanA=1384\tan A = \frac{13}{84}99 cosB=7275\cos B = \frac{72}{75}00 cosB=7275\cos B = \frac{72}{75}11 cosB=7275\cos B = \frac{72}{75}22
  2. Find sine B: Find sinB\sin B using the given cosB\cos B. We are given cosB=7275\cos B = \frac{72}{75}. To find sinB\sin B, we use the Pythagorean identity again: sin2B+cos2B=1\sin^2 B + \cos^2 B = 1 sin2B=1cos2B\sin^2 B = 1 - \cos^2 B sin2B=1(7275)2\sin^2 B = 1 - \left(\frac{72}{75}\right)^2 sin2B=151845625\sin^2 B = 1 - \frac{5184}{5625} sin2B=562551845625\sin^2 B = \frac{5625 - 5184}{5625} sin2B=4415625\sin^2 B = \frac{441}{5625} cosB\cos B00 cosB\cos B11 cosB\cos B22
  3. Use sine addition formula: Use the sine addition formula to find sin(A+B)\sin(A+B). The sine addition formula is sin(A+B)=sinAcosB+cosAsinB\sin(A+B) = \sin A \cdot \cos B + \cos A \cdot \sin B. We already have sinA=1385\sin A = \frac{13}{85} and sinB=725\sin B = \frac{7}{25}. We also have cosA=8485\cos A = \frac{84}{85} and cosB=7275\cos B = \frac{72}{75}. Now we plug these values into the formula: sin(A+B)=(1385)(7275)+(8485)(725)\sin(A+B) = \left(\frac{13}{85}\right) \cdot \left(\frac{72}{75}\right) + \left(\frac{84}{85}\right) \cdot \left(\frac{7}{25}\right) sin(A+B)=9366375+5882125\sin(A+B) = \frac{936}{6375} + \frac{588}{2125} sin(A+B)=9366375+17646375\sin(A+B) = \frac{936}{6375} + \frac{1764}{6375} sin(A+B)=936+17646375\sin(A+B) = \frac{936 + 1764}{6375} sin(A+B)=sinAcosB+cosAsinB\sin(A+B) = \sin A \cdot \cos B + \cos A \cdot \sin B00

More problems from Multiplication with rational exponents