Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the answer which is equivalent to the given expression using your calculator.

(-8)/(-20+sqrt18)

(80-4sqrt18)/(191)

(400-20sqrt18)/(191)

(80+4sqrt18)/(191)

(400+20sqrt18)/(191)

Select the answer which is equivalent to the given expression using your calculator.\newline820+18 \frac{-8}{-20+\sqrt{18}} \newline80418191 \frac{80-4 \sqrt{18}}{191} \newline4002018191 \frac{400-20 \sqrt{18}}{191} \newline80+418191 \frac{80+4 \sqrt{18}}{191} \newline400+2018191 \frac{400+20 \sqrt{18}}{191}

Full solution

Q. Select the answer which is equivalent to the given expression using your calculator.\newline820+18 \frac{-8}{-20+\sqrt{18}} \newline80418191 \frac{80-4 \sqrt{18}}{191} \newline4002018191 \frac{400-20 \sqrt{18}}{191} \newline80+418191 \frac{80+4 \sqrt{18}}{191} \newline400+2018191 \frac{400+20 \sqrt{18}}{191}
  1. Simplify Square Root: Simplify the square root in the denominator. 18\sqrt{18} can be simplified because 18=9×218 = 9 \times 2, and 99 is a perfect square. 18=9×2=9×2=3×2\sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3 \times \sqrt{2}
  2. Substitute Simplified Expression: Substitute the simplified square root back into the expression.\newlineThe original expression (8)/(20+18)(-8)/(-20+\sqrt{18}) becomes (8)/(20+32)(-8)/(-20+3\sqrt{2})
  3. Match Simplified Form: Look for the expression that matches the simplified form.\newlineWe need to find which of the given options matches (8)/(20+32)(-8)/(-20+3\sqrt{2}) when simplified.
  4. Check Options for Match: Simplify the given options to see if any match the expression from Step 22.\newlineOption 11: (80418)/(191)(80-4\sqrt{18})/(191) simplifies to (80432)/(191)=(80122)/(191)(80-4\cdot 3\cdot\sqrt{2})/(191) = (80-12\sqrt{2})/(191)\newlineOption 22: (4002018)/(191)(400-20\sqrt{18})/(191) simplifies to (4002032)/(191)=(400602)/(191)(400-20\cdot 3\cdot\sqrt{2})/(191) = (400-60\sqrt{2})/(191)\newlineOption 33: (80+418)/(191)(80+4\sqrt{18})/(191) simplifies to (80+432)/(191)=(80+122)/(191)(80+4\cdot 3\cdot\sqrt{2})/(191) = (80+12\sqrt{2})/(191)\newlineOption 44: (400+2018)/(191)(400+20\sqrt{18})/(191) simplifies to (400+2032)/(191)=(400+602)/(191)(400+20\cdot 3\cdot\sqrt{2})/(191) = (400+60\sqrt{2})/(191)\newlineNone of these options match (8)/(20+32)(-8)/(-20+3\cdot\sqrt{2}) directly. However, we can multiply the numerator and denominator of our expression by 1-1 to get a positive denominator and see if it matches any option:\newline(80432)/(191)=(80122)/(191)(80-4\cdot 3\cdot\sqrt{2})/(191) = (80-12\sqrt{2})/(191)00
  5. Re-evaluate Simplification: Check if the expression (8)/(2032)(8)/(20-3\sqrt{2}) matches any of the options.\newlineOption 11: (80122)/(191)(80-12\sqrt{2})/(191) does not match because the numerator is not 88.\newlineOption 22: (400602)/(191)(400-60\sqrt{2})/(191) does not match because the numerator is not 88.\newlineOption 33: (80+122)/(191)(80+12\sqrt{2})/(191) does not match because the sign in front of the square root is positive.\newlineOption 44: (400+602)/(191)(400+60\sqrt{2})/(191) does not match because the numerator is not 88.\newlineNone of the options match the expression (8)/(2032)(8)/(20-3\sqrt{2}). This means there might be a mistake in the simplification or the given options do not include the correct equivalent expression.
  6. Re-evaluate Simplification: Check if the expression (8)/(2032)(8)/(20-3\sqrt{2}) matches any of the options.\newlineOption 11: (80122)/(191)(80-12\sqrt{2})/(191) does not match because the numerator is not 88.\newlineOption 22: (400602)/(191)(400-60\sqrt{2})/(191) does not match because the numerator is not 88.\newlineOption 33: (80+122)/(191)(80+12\sqrt{2})/(191) does not match because the sign in front of the square root is positive.\newlineOption 44: (400+602)/(191)(400+60\sqrt{2})/(191) does not match because the numerator is not 88.\newlineNone of the options match the expression (8)/(2032)(8)/(20-3\sqrt{2}). This means there might be a mistake in the simplification or the given options do not include the correct equivalent expression.Re-evaluate the simplification and the given options.\newlineUpon re-evaluation, it seems that there was a mistake in the previous steps. The expression (8)/(20+18)(-8)/(-20+\sqrt{18}) should be equivalent to one of the given options. Let's multiply the numerator and denominator of our expression by the conjugate of the denominator to rationalize it:\newline(80122)/(191)(80-12\sqrt{2})/(191)00

More problems from Roots of integers