Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the answer which is equivalent to the given expression using your calculator.

(-6)/(-17-sqrt7)

(34+2sqrt7)/(47)

(34-2sqrt7)/(47)

(17+sqrt7)/(47)

(17-sqrt7)/(47)

Select the answer which is equivalent to the given expression using your calculator.\newline6177 \frac{-6}{-17-\sqrt{7}} \newline34+2747 \frac{34+2 \sqrt{7}}{47} \newline342747 \frac{34-2 \sqrt{7}}{47} \newline17+747 \frac{17+\sqrt{7}}{47} \newline17747 \frac{17-\sqrt{7}}{47}

Full solution

Q. Select the answer which is equivalent to the given expression using your calculator.\newline6177 \frac{-6}{-17-\sqrt{7}} \newline34+2747 \frac{34+2 \sqrt{7}}{47} \newline342747 \frac{34-2 \sqrt{7}}{47} \newline17+747 \frac{17+\sqrt{7}}{47} \newline17747 \frac{17-\sqrt{7}}{47}
  1. Rationalize Denominator: First, we need to rationalize the denominator of the given expression (6)/(177)(-6)/(-17-\sqrt{7}) because it contains a square root.\newlineTo do this, we will multiply both the numerator and the denominator by the conjugate of the denominator, which is (17+7)(-17+\sqrt{7}).
  2. Multiply by Conjugate: The conjugate of (177)(-17-\sqrt{7}) is (17+7)(-17+\sqrt{7}). We multiply the numerator and the denominator by this conjugate to rationalize the denominator:\newline(6177)×(17+717+7)\left(\frac{-6}{-17-\sqrt{7}}\right) \times \left(\frac{-17+\sqrt{7}}{-17+\sqrt{7}}\right)
  3. Perform Multiplication: Now, we perform the multiplication in the numerator and the denominator separately:\newlineNumerator: 6×(17+7)=10267-6 \times (-17+\sqrt{7}) = 102 - 6\sqrt{7}\newlineDenominator: (177)×(17+7)=(17)2(7)2=2897=282(-17-\sqrt{7}) \times (-17+\sqrt{7}) = (-17)^2 - (\sqrt{7})^2 = 289 - 7 = 282
  4. Simplify Expression: Now we have the expression in the form: \newline(10267)/282(102 - 6\sqrt{7}) / 282
  5. Divide by Greatest Common Divisor: We can simplify this expression by dividing both the terms in the numerator by the denominator: 102282(67)282\frac{102}{282} - \frac{(6\sqrt{7})}{282}
  6. Combine Terms: Simplify the fractions by dividing the numerator and the denominator by their greatest common divisor, which is 66 for both terms:\newline102/6282/66/67282/6 \frac{102/6}{282/6} - \frac{6/6\sqrt{7}}{282/6} \newline17/477/4717/47 - \sqrt{7} / 47
  7. Combine Terms: Simplify the fractions by dividing the numerator and the denominator by their greatest common divisor, which is 66 for both terms:\newline1026/2826667/2826\frac{102}{6} / \frac{282}{6} - \frac{6}{6}\sqrt{7} / \frac{282}{6}\newline17/477/4717/47 - \sqrt{7} / 47 Combine the terms to get the final simplified expression:\newline17747\frac{17 - \sqrt{7}}{47}

More problems from Simplify rational expressions