Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the answer which is equivalent to the given expression using your calculator.

{:[(6a^(-2))/(5b^(-(2)/(3)))],[a=-3" and "b=64]:}

-(32)/(15)

(32)/(15)

(32)/(45)

-(32)/(45)

Select the answer which is equivalent to the given expression using your calculator.\newline6a25b23a=3 and b=64 \begin{array}{c} \frac{6 a^{-2}}{5 b^{-\frac{2}{3}}} \\ a=-3 \text { and } b=64 \end{array} \newline3215 -\frac{32}{15} \newline3215 \frac{32}{15} \newline3245 \frac{32}{45} \newline3245 -\frac{32}{45}

Full solution

Q. Select the answer which is equivalent to the given expression using your calculator.\newline6a25b23a=3 and b=64 \begin{array}{c} \frac{6 a^{-2}}{5 b^{-\frac{2}{3}}} \\ a=-3 \text { and } b=64 \end{array} \newline3215 -\frac{32}{15} \newline3215 \frac{32}{15} \newline3245 \frac{32}{45} \newline3245 -\frac{32}{45}
  1. Substitute Values: Substitute the given values of a and b into the expression.\newlineWe have the expression 6a25b23\frac{6a^{-2}}{5b^{-\frac{2}{3}}} and the values a=3a = -3 and b=64b = 64. Let's substitute these values into the expression.\newline6(3)25(64)23\frac{6(-3)^{-2}}{5(64)^{-\frac{2}{3}}}
  2. Simplify Exponents: Simplify the expression by calculating the exponents.\newlineWe need to calculate (3)2(-3)^{-2} and 642364^{-\frac{2}{3}}.\newline(3)2=1(3)2=19(-3)^{-2} = \frac{1}{(-3)^2} = \frac{1}{9}\newline6423=1642364^{-\frac{2}{3}} = \frac{1}{64^{\frac{2}{3}}}\newlineSince 64=4364 = 4^3, we can write 642364^{\frac{2}{3}} as (43)23=42=16(4^3)^{\frac{2}{3}} = 4^2 = 16.\newlineSo, 6423=11664^{-\frac{2}{3}} = \frac{1}{16}.\newlineNow, our expression looks like this:\newline6195116\frac{6 \cdot \frac{1}{9}}{5 \cdot \frac{1}{16}}
  3. Perform Multiplication and Division: Perform the multiplication and division.\newlineNow we multiply the numerators and denominators separately.\newline6195116=69165\frac{6 \cdot \frac{1}{9}}{5 \cdot \frac{1}{16}} = \frac{6}{9} \cdot \frac{16}{5}\newlineSimplify the fraction 69\frac{6}{9} to 23\frac{2}{3} by dividing both numerator and denominator by 33.\newline23165\frac{2}{3} \cdot \frac{16}{5}\newlineNow multiply the numerators together and the denominators together.\newline21635=3215\frac{2 \cdot 16}{3 \cdot 5} = \frac{32}{15}
  4. Determine Sign: Determine the sign of the result.\newlineSince both a and b are positive after being raised to their respective powers, the result will be positive. Therefore, the answer is 3215\frac{32}{15}.

More problems from Multiplication with rational exponents