Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the answer which is equivalent to the given expression using your calculator.

sec(arccos ((sqrt156)/(16)))

(10)/(16)

(16)/(10)

(10)/(sqrt156)

(16)/(sqrt156)

Select the answer which is equivalent to the given expression using your calculator.\newlinesec(arccos15616) \sec \left(\arccos \frac{\sqrt{156}}{16}\right) \newline1016 \frac{10}{16} \newline1610 \frac{16}{10} \newline10156 \frac{10}{\sqrt{156}} \newline16156 \frac{16}{\sqrt{156}}

Full solution

Q. Select the answer which is equivalent to the given expression using your calculator.\newlinesec(arccos15616) \sec \left(\arccos \frac{\sqrt{156}}{16}\right) \newline1016 \frac{10}{16} \newline1610 \frac{16}{10} \newline10156 \frac{10}{\sqrt{156}} \newline16156 \frac{16}{\sqrt{156}}
  1. Understand secant function: First, let's understand the expression sec(arccos(15616))\sec(\arccos(\frac{\sqrt{156}}{16})). The secant function is the reciprocal of the cosine function. So, sec(θ)=1cos(θ)\sec(\theta) = \frac{1}{\cos(\theta)}. Therefore, sec(arccos(x))=1cos(arccos(x))=1x\sec(\arccos(x)) = \frac{1}{\cos(\arccos(x))} = \frac{1}{x}, because arccos(x)\arccos(x) is the angle whose cosine is xx.
  2. Apply understanding to expression: Now, let's apply this understanding to our expression. sec(arccos(15616))=1156/16\sec(\arccos(\frac{\sqrt{156}}{16})) = \frac{1}{\sqrt{156}/16} To simplify this, we can multiply the numerator and the denominator by 1616.
  3. Simplify expression: After multiplying by 1616, we get:\newlinesec(arccos(15616))=16156\sec(\arccos(\frac{\sqrt{156}}{16})) = \frac{16}{\sqrt{156}}\newlineThis is one of the options given, so we can conclude that this is the equivalent expression.

More problems from Roots of rational numbers