Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the answer which is equivalent to the given expression using your calculator.

sin(arcsin ((11)/(14)))

(sqrt75)/(14)

(11)/(14)

(14)/(11)

(sqrt75)/(11)

Select the answer which is equivalent to the given expression using your calculator.\newlinesin(arcsin1114) \sin \left(\arcsin \frac{11}{14}\right) \newline7514 \frac{\sqrt{75}}{14} \newline1114 \frac{11}{14} \newline1411 \frac{14}{11} \newline7511 \frac{\sqrt{75}}{11}

Full solution

Q. Select the answer which is equivalent to the given expression using your calculator.\newlinesin(arcsin1114) \sin \left(\arcsin \frac{11}{14}\right) \newline7514 \frac{\sqrt{75}}{14} \newline1114 \frac{11}{14} \newline1411 \frac{14}{11} \newline7511 \frac{\sqrt{75}}{11}
  1. Understand Functions Composition: Understand the composition of functions sin\sin and arcsin\arcsin. The arcsin\arcsin function is the inverse of the sin\sin function. Therefore, when we take the sin\sin of the arcsin\arcsin of a number, we should get the original number back, provided that the number is within the domain of the sine function, which is [1,1][-1, 1].
  2. Evaluate sin(arcsin(1114))\sin(\arcsin(\frac{11}{14})): Evaluate sin(arcsin(1114))\sin(\arcsin(\frac{11}{14})).\newlineSince 1114\frac{11}{14} is within the domain of the sine function, we can directly say that sin(arcsin(1114))=1114\sin(\arcsin(\frac{11}{14})) = \frac{11}{14} without using a calculator.
  3. Compare Result with Options: Compare the result with the given options.\newlineThe result from Step 22 is 1114\frac{11}{14}, which matches one of the given options.

More problems from Multiplication with rational exponents