Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the answer which is equivalent to the given expression using your calculator.

(-6)/(-16-sqrt12)

(48+3sqrt12)/(122)

(144+9sqrt12)/(122)

(144-9sqrt12)/(122)

(48-3sqrt12)/(122)

Select the answer which is equivalent to the given expression using your calculator.\newline61612 \frac{-6}{-16-\sqrt{12}} \newline48+312122 \frac{48+3 \sqrt{12}}{122} \newline144+912122 \frac{144+9 \sqrt{12}}{122} \newline144912122 \frac{144-9 \sqrt{12}}{122} \newline48312122 \frac{48-3 \sqrt{12}}{122}

Full solution

Q. Select the answer which is equivalent to the given expression using your calculator.\newline61612 \frac{-6}{-16-\sqrt{12}} \newline48+312122 \frac{48+3 \sqrt{12}}{122} \newline144+912122 \frac{144+9 \sqrt{12}}{122} \newline144912122 \frac{144-9 \sqrt{12}}{122} \newline48312122 \frac{48-3 \sqrt{12}}{122}
  1. Simplify square root: First, simplify the square root in the denominator of the given expression.\newline12=(43)=43=23\sqrt{12} = \sqrt{(4\cdot3)} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}
  2. Substitute simplified value: Now, substitute the simplified square root back into the original expression. \newline(6)/(1623)(-6)/(-16-2\sqrt{3})
  3. Multiply by conjugate: To eliminate the square root from the denominator, multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of (1623)(-16-2\sqrt{3}) is (16+23)(-16+2\sqrt{3}).(61623)×(16+2316+23)=(6)×(16+23)(1623)×(16+23)\left(\frac{-6}{-16-2\sqrt{3}}\right) \times \left(\frac{-16+2\sqrt{3}}{-16+2\sqrt{3}}\right) = \frac{(-6)\times(-16+2\sqrt{3})}{(-16-2\sqrt{3})\times(-16+2\sqrt{3})}
  4. Perform numerator multiplication: Perform the multiplication in the numerator.\newline(6)×(16+23)=96123(-6)\times(-16+2\sqrt{3}) = 96 - 12\sqrt{3}
  5. Use difference of squares: Perform the multiplication in the denominator using the difference of squares formula.\newline((16)2(23)2)=25643=25612=244((-16)^2 - (2\sqrt{3})^2) = 256 - 4\cdot3 = 256 - 12 = 244
  6. Write simplified expression: Now, write the simplified expression with the multiplied numerator and denominator. (96123)/244(96 - 12\sqrt{3}) / 244
  7. Divide by greatest common divisor: To simplify further, divide both terms in the numerator by the denominator. 96244123244\frac{96}{244} - \frac{12\sqrt{3}}{244}
  8. Perform division: Simplify the fractions by dividing the numerator and denominator by their greatest common divisor, which is 44 for the first term and 1212 for the second term.\newline964/244412123/24412\frac{96}{4} / \frac{244}{4} - \frac{12}{12}\sqrt{3} / \frac{244}{12}
  9. Correct second term division: Perform the division for both terms. 2461320.3333\frac{24}{61} - \frac{\sqrt{3}}{20.3333\ldots}
  10. Correct second term division: Perform the division for both terms. 24/613/20.3333...24/61 - \sqrt{3}/20.3333... Since the denominator 20.3333...20.3333... is not a simplified fraction, we need to correct this. The correct division for the second term is (123)/244=(3)/20.3333...=3/20.3333...=3/20.3333...(12\sqrt{3})/244 = (\sqrt{3})/20.3333... = \sqrt{3}/20.3333... = \sqrt{3}/20.3333...

More problems from Sum of finite series starts from 1