Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the answer which is equivalent to the given expression using your calculator.

(-5)/(10+sqrt6)

(-50-5sqrt6)/(94)

(-350-35sqrt6)/(94)

(-50+5sqrt6)/(94)

(-350+35sqrt6)/(94)

Select the answer which is equivalent to the given expression using your calculator.\newline510+6 \frac{-5}{10+\sqrt{6}} \newline505694 \frac{-50-5 \sqrt{6}}{94} \newline35035694 \frac{-350-35 \sqrt{6}}{94} \newline50+5694 \frac{-50+5 \sqrt{6}}{94} \newline350+35694 \frac{-350+35 \sqrt{6}}{94}

Full solution

Q. Select the answer which is equivalent to the given expression using your calculator.\newline510+6 \frac{-5}{10+\sqrt{6}} \newline505694 \frac{-50-5 \sqrt{6}}{94} \newline35035694 \frac{-350-35 \sqrt{6}}{94} \newline50+5694 \frac{-50+5 \sqrt{6}}{94} \newline350+35694 \frac{-350+35 \sqrt{6}}{94}
  1. Rationalize Denominator: To find the equivalent expression, we need to rationalize the denominator of the given expression (5)/(10+6)(-5)/(10+\sqrt{6}). This means we need to eliminate the square root from the denominator.
  2. Multiply by Conjugate: To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of (10+6)(10+\sqrt{6}) is (106)(10-\sqrt{6}).
  3. Simplify Numerator: Now, multiply the numerator and the denominator by the conjugate: (510+6)×(106106)=5×(106)(10+6)×(106).\left(\frac{-5}{10+\sqrt{6}}\right) \times \left(\frac{10-\sqrt{6}}{10-\sqrt{6}}\right) = \frac{-5 \times (10-\sqrt{6})}{(10+\sqrt{6}) \times (10-\sqrt{6})}.
  4. Simplify Denominator: Simplify the numerator: 5×(106)=50+56-5 \times (10-\sqrt{6}) = -50 + 5\sqrt{6}.
  5. Final Simplified Expression: Simplify the denominator using the difference of squares formula: (10+6)×(106)=102(6)2=1006=94(10+\sqrt{6}) \times (10-\sqrt{6}) = 10^2 - (\sqrt{6})^2 = 100 - 6 = 94.
  6. Compare with Answer Choices: Now we have the simplified expression: (50+56)/94(-50 + 5\sqrt{6}) / 94.
  7. Compare with Answer Choices: Now we have the simplified expression: (50+56)/94(-50 + 5\sqrt{6}) / 94.Comparing the simplified expression with the answer choices, we find that the equivalent expression is (50+56)/(94)(-50+5\sqrt{6})/(94).

More problems from Sum of finite series starts from 1