Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the answer which is equivalent to the given expression using your calculator.

cot(arccos ((sqrt315)/(18)))

(3)/(sqrt315)

(sqrt315)/(18)

(sqrt315)/(3)

(18)/(3)

Select the answer which is equivalent to the given expression using your calculator.\newlinecot(arccos31518) \cot \left(\arccos \frac{\sqrt{315}}{18}\right) \newline3315 \frac{3}{\sqrt{315}} \newline31518 \frac{\sqrt{315}}{18} \newline3153 \frac{\sqrt{315}}{3} \newline183 \frac{18}{3}

Full solution

Q. Select the answer which is equivalent to the given expression using your calculator.\newlinecot(arccos31518) \cot \left(\arccos \frac{\sqrt{315}}{18}\right) \newline3315 \frac{3}{\sqrt{315}} \newline31518 \frac{\sqrt{315}}{18} \newline3153 \frac{\sqrt{315}}{3} \newline183 \frac{18}{3}
  1. Understand relationship between functions: Understand the relationship between cotangent and cosine functions.\newlineCotangent is the reciprocal of the tangent function, and tangent of an angle is the sine divided by the cosine of that angle. Therefore, cotangent of an angle is the cosine divided by the sine of that angle.
  2. Evaluate cosine of given angle: Evaluate the cosine of the angle given by arccos(31518)\arccos\left(\frac{\sqrt{315}}{18}\right). Since arccos(31518)\arccos\left(\frac{\sqrt{315}}{18}\right) is the angle whose cosine is 31518\frac{\sqrt{315}}{18}, we can denote this angle as θ\theta for simplicity. So, cos(θ)=31518\cos(\theta) = \frac{\sqrt{315}}{18}.
  3. Find sine using Pythagorean identity: Find the sine of the angle θ\theta using the Pythagorean identity.\newlineThe Pythagorean identity states that sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1. We already have cos(θ)\cos(\theta), so we can solve for sin(θ)\sin(\theta).\newlinesin2(θ)=1cos2(θ)\sin^2(\theta) = 1 - \cos^2(\theta)\newlinesin2(θ)=1(31518)2\sin^2(\theta) = 1 - (\frac{\sqrt{315}}{18})^2\newlinesin2(θ)=1315324\sin^2(\theta) = 1 - \frac{315}{324}\newlinesin2(θ)=13536\sin^2(\theta) = 1 - \frac{35}{36}\newlinesin2(θ)=36363536\sin^2(\theta) = \frac{36}{36} - \frac{35}{36}\newlinesin2(θ)=136\sin^2(\theta) = \frac{1}{36}\newlinesin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 100\newlinesin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 111
  4. Calculate cotangent using values: Calculate cot(θ)\cot(\theta) using the values of sin(θ)\sin(\theta) and cos(θ)\cos(\theta).cot(θ)=cos(θ)sin(θ)\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}cot(θ)=31518/16\cot(\theta) = \frac{\sqrt{315}}{18} / \frac{1}{6}cot(θ)=3151861\cot(\theta) = \frac{\sqrt{315}}{18} \cdot \frac{6}{1}cot(θ)=3153\cot(\theta) = \frac{\sqrt{315}}{3}

More problems from Simplify expressions using trigonometric identities