Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the answer which is equivalent to the given expression using your calculator.

(-6)/(17+sqrt15)

(-51-3sqrt15)/(137)

(-102+6sqrt15)/(137)

(-102-6sqrt15)/(137)

(-51+3sqrt15)/(137)

Select the answer which is equivalent to the given expression using your calculator.\newline617+15 \frac{-6}{17+\sqrt{15}} \newline51315137 \frac{-51-3 \sqrt{15}}{137} \newline102+615137 \frac{-102+6 \sqrt{15}}{137} \newline102615137 \frac{-102-6 \sqrt{15}}{137} \newline51+315137 \frac{-51+3 \sqrt{15}}{137}

Full solution

Q. Select the answer which is equivalent to the given expression using your calculator.\newline617+15 \frac{-6}{17+\sqrt{15}} \newline51315137 \frac{-51-3 \sqrt{15}}{137} \newline102+615137 \frac{-102+6 \sqrt{15}}{137} \newline102615137 \frac{-102-6 \sqrt{15}}{137} \newline51+315137 \frac{-51+3 \sqrt{15}}{137}
  1. Rationalize Denominator: To find the equivalent expression for the given problem, we need to rationalize the denominator of the fraction (6)/(17+15)(-6)/(17+\sqrt{15}). This involves multiplying the numerator and the denominator by the conjugate of the denominator, which is (1715)(17-\sqrt{15}).
  2. Multiply by Conjugate: The conjugate of (17+15)(17+\sqrt{15}) is (1715)(17-\sqrt{15}). We multiply the numerator and the denominator by this conjugate to rationalize the denominator.\newline((6)/(17+15))×((1715)/(1715))=(6×(1715))/((17+15)×(1715))((-6)/(17+\sqrt{15})) \times ((17-\sqrt{15})/(17-\sqrt{15})) = (-6\times(17-\sqrt{15}))/((17+\sqrt{15})\times(17-\sqrt{15}))
  3. Perform Numerator Multiplication: Now we perform the multiplication in the numerator: 6×17=102-6 \times 17 = -102 and 6×(15)=615-6 \times (-\sqrt{15}) = 6\sqrt{15}. So the numerator becomes (102+615)(-102 + 6\sqrt{15}).
  4. Multiply Denominators: Next, we multiply the denominators using the difference of squares formula: (17+15)(1715)=172(15)2=28915=274(17+\sqrt{15})(17-\sqrt{15}) = 17^2 - (\sqrt{15})^2 = 289 - 15 = 274.
  5. Divide by 22: Now we have the fraction (102+615)/274(-102 + 6\sqrt{15}) / 274. To simplify this, we can divide both the numerator and the denominator by 22.
  6. Final Simplified Fraction: Dividing the numerator by 22 gives us (102/2)+(615/2)=51+315(-102/2) + (6\sqrt{15}/2) = -51 + 3\sqrt{15}. Dividing the denominator by 22 gives us 274/2=137274/2 = 137.
  7. Final Simplified Fraction: Dividing the numerator by 22 gives us (102/2)+(615/2)=51+315(-102/2) + (6\sqrt{15}/2) = -51 + 3\sqrt{15}. Dividing the denominator by 22 gives us 274/2=137274/2 = 137.The simplified fraction is now (51+315)/137(-51 + 3\sqrt{15}) / 137. This matches one of the answer choices provided.

More problems from Sum of finite series starts from 1