Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

root(4)((405x^(3)y^(3))/(5x^(-1)y))=

405x3y35x1y4= \sqrt[4]{\frac{405 x^{3} y^{3}}{5 x^{-1} y}}=

Full solution

Q. 405x3y35x1y4= \sqrt[4]{\frac{405 x^{3} y^{3}}{5 x^{-1} y}}=
  1. Simplify Fraction Inside Root: Simplify the fraction inside the fourth root.\newlineWe have the expression 405x3y35x1y4\sqrt[4]{\frac{405x^{3}y^{3}}{5x^{-1}y}}. First, we simplify the fraction by dividing the numerator by the denominator.\newline405x3y35x1y=4055×(x3×x1)×(y3/y)\frac{405x^{3}y^{3}}{5x^{-1}y} = \frac{405}{5} \times (x^{3} \times x^{1}) \times (y^{3} / y)\newline=81×x3+1×y21= 81 \times x^{3+1} \times y^{2-1}\newline=81×x4×y2= 81 \times x^{4} \times y^{2}
  2. Apply Fourth Root: Apply the fourth root to the simplified expression.\newlineNow we take the fourth root of the simplified expression.\newline81×x4×y24\sqrt[4]{81 \times x^{4} \times y^{2}}\newlineSince 8181 is a perfect fourth power (34=813^4 = 81), and x4x^4 is also a perfect fourth power, we can simplify further.\newline814\sqrt[4]{81} ×\times x44\sqrt[4]{x^{4}} ×\times y24\sqrt[4]{y^{2}}\newline= 3×x×y243 \times x \times \sqrt[4]{y^{2}}
  3. Check Further Simplification: Check if the expression inside the fourth root can be simplified further.\newlineThe expression y24\sqrt[4]{y^{2}} cannot be simplified further because y2y^2 is not a perfect fourth power. Therefore, the final simplified expression is:\newline3×x×y243 \times x \times \sqrt[4]{y^{2}}

More problems from Multiplication with rational exponents