Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

162a84\sqrt[4]{162a^{8}}\newline(A) 3a2243a^{2}\sqrt[4]{2}\newline(B) 2a7a342a\sqrt[4]{7a^{3}}\newline(C) 33a343\sqrt[4]{3a^{3}}\newline(D) 3a7a43a\sqrt[4]{7a}

Full solution

Q. 162a84\sqrt[4]{162a^{8}}\newline(A) 3a2243a^{2}\sqrt[4]{2}\newline(B) 2a7a342a\sqrt[4]{7a^{3}}\newline(C) 33a343\sqrt[4]{3a^{3}}\newline(D) 3a7a43a\sqrt[4]{7a}
  1. Break down number into primes: Break down the number 162162 into its prime factors.\newline162162 can be factored into 2×812 \times 81, and 8181 is 343^4.\newlineSo, 162=2×(34)162 = 2 \times (3^4).
  2. Write expression with prime factors: Write the expression with the prime factors inside the fourth root. 162a84=2×34×a84\sqrt[4]{162a^{8}} = \sqrt[4]{2 \times 3^{4} \times a^{8}}
  3. Simplify fourth root of each factor: Simplify the fourth root of each factor separately.\newlineThe fourth root of 343^4 is 33, and the fourth root of a8a^8 is a2a^2 because (a2)4=a8(a^2)^4 = a^8.\newline234a84=3a224\sqrt[4]{2 \cdot 3^4 \cdot a^8} = 3a^2 \cdot \sqrt[4]{2}
  4. Write final simplified expression: Write the final simplified expression.\newlineThe final expression is 3a2243a^2 \cdot \sqrt[4]{2}, which matches option (A)(A).

More problems from Multiplication with rational exponents