Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

root(3)(81a^(5)b^(4))=

81a5b43 \sqrt[3]{81 a^{5} b^{4}} =

Full solution

Q. 81a5b43 \sqrt[3]{81 a^{5} b^{4}} =
  1. Apply cube root to factors: Apply the cube root to each factor in the expression 81a5b43\sqrt[3]{81a^{5}b^{4}}.81a5b43=813a53b43\sqrt[3]{81a^{5}b^{4}} = \sqrt[3]{81} \cdot \sqrt[3]{a^{5}} \cdot \sqrt[3]{b^{4}}
  2. Calculate cube root of 8181: Calculate the cube root of 8181. \newline813=343=343=31+13=3×313\sqrt[3]{81} = \sqrt[3]{3^4} = 3^{\frac{4}{3}} = 3^{1+\frac{1}{3}} = 3 \times 3^{\frac{1}{3}}\newlineSince 8181 is a perfect cube (343^4), its cube root is simply 33.
  3. Simplify cube root of a5a^5: Simplify the cube root of a5a^{5}.a53=a53=a1+23=aa23\sqrt[3]{a^{5}} = a^{\frac{5}{3}} = a^{1+\frac{2}{3}} = a \cdot a^{\frac{2}{3}} We cannot simplify this further without knowing the value of 'aa'.
  4. Simplify cube root of b4b^4: Simplify the cube root of b4b^{4}.
    b43=b43=b1+13=bb13\sqrt[3]{b^{4}} = b^{\frac{4}{3}} = b^{1+\frac{1}{3}} = b \cdot b^{\frac{1}{3}}
    We cannot simplify this further without knowing the value of b'b'.
  5. Combine simplified cube roots: Combine the simplified cube roots. 81a5b43=3ab(313a23b13)\sqrt[3]{81a^{5}b^{4}} = 3 \cdot a \cdot b \cdot (3^{\frac{1}{3}} \cdot a^{\frac{2}{3}} \cdot b^{\frac{1}{3}})
  6. Recognize cube root of 3a2b3a^2b: Recognize that the expression 3(1/3)a(2/3)b(1/3)3^{(1/3)} \cdot a^{(2/3)} \cdot b^{(1/3)} is the cube root of 3a2b3a^2b.
    81a5b43=3ab3a2b3\sqrt[3]{81a^{5}b^{4}} = 3ab \cdot \sqrt[3]{3a^2b}

More problems from Roots of rational numbers