Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the expression in the form 
b^(n).

(b^((1)/(5)))/(b)=◻

Rewrite the expression in the form bn b^{n} .\newlineb15b= \frac{b^{\frac{1}{5}}}{b}=\square

Full solution

Q. Rewrite the expression in the form bn b^{n} .\newlineb15b= \frac{b^{\frac{1}{5}}}{b}=\square
  1. Recognize properties of exponents: Recognize the properties of exponents.\newlineWhen dividing powers with the same base, subtract the exponents.\newlineb15b=b151\frac{b^{\frac{1}{5}}}{b} = b^{\frac{1}{5} - 1}
  2. Divide powers with the same base: Subtract the exponents.\newline151\frac{1}{5} - 1 is the same as 1555\frac{1}{5} - \frac{5}{5}, which equals 45-\frac{4}{5}.\newlineb151=b45b^{\frac{1}{5} - 1} = b^{-\frac{4}{5}}
  3. Subtract exponents: Write the final answer.\newlineThe expression in the form bnb^n is b(4/5)b^{(-4/5)}.

More problems from Multiply using the distributive property