Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the expression in the form 
a^(n).

(a^(5))/(a^((5)/(2)))=◻^(--x)

Rewrite the expression in the form \newlineana^{n}.\newlinea5a(52)=x\frac{a^{5}}{a^{\left(\frac{5}{2}\right)}}=\square^{-x}

Full solution

Q. Rewrite the expression in the form \newlineana^{n}.\newlinea5a(52)=x\frac{a^{5}}{a^{\left(\frac{5}{2}\right)}}=\square^{-x}
  1. Apply Quotient Rule: We have the expression a5a52\frac{a^{5}}{a^{\frac{5}{2}}}. To simplify, we use the quotient rule of exponents which states that when dividing like bases, we subtract the exponents. So, a5/a52=a552a^{5} / a^{\frac{5}{2}} = a^{5 - \frac{5}{2}}.
  2. Subtract Exponents: Now we need to perform the subtraction in the exponent: 5(52)5 - \left(\frac{5}{2}\right). To subtract these, we need a common denominator. The common denominator for 11 and 22 is 22. So we rewrite 55 as (102)\left(\frac{10}{2}\right) to get a common denominator. (102)(52)=1052=52\left(\frac{10}{2}\right) - \left(\frac{5}{2}\right) = \frac{10 - 5}{2} = \frac{5}{2}.
  3. Find Common Denominator: Now we can rewrite the expression with the simplified exponent. a5(52)=a52a^{5 - (\frac{5}{2})} = a^{\frac{5}{2}}.
  4. Simplify Exponent: The expression a52a^{\frac{5}{2}} is already in the form ana^{n}, where nn is 52\frac{5}{2}. So, the expression (a5)/(a52)(a^{5})/(a^{\frac{5}{2}}) simplifies to a52a^{\frac{5}{2}}.

More problems from Evaluate integers raised to rational exponents