Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the expression as a product of four linear factors:

(3x^(2)-x)^(2)-6(3x^(2)-x)+8
Answer:

Rewrite the expression as a product of four linear factors:\newline(3x2x)26(3x2x)+8 \left(3 x^{2}-x\right)^{2}-6\left(3 x^{2}-x\right)+8 \newlineAnswer:

Full solution

Q. Rewrite the expression as a product of four linear factors:\newline(3x2x)26(3x2x)+8 \left(3 x^{2}-x\right)^{2}-6\left(3 x^{2}-x\right)+8 \newlineAnswer:
  1. Recognize Quadratic Form: Recognize the given expression as a quadratic in form The expression (3x2x)26(3x2x)+8(3x^{2}-x)^{2}-6(3x^{2}-x)+8 resembles a quadratic equation in the form of (ax)2bx+c(ax)^{2} - bx + c, where 'ax' is (3x2x)(3x^2 - x). To factor it, we can treat (3x2x)(3x^2 - x) as a single variable, say 'y'. So, let y=(3x2x)y = (3x^2 - x). The expression then becomes y26y+8y^2 - 6y + 8.
  2. Factor Quadratic Expression: Factor the quadratic expression\newlineNow we factor y26y+8y^2 - 6y + 8. This factors into (y2)(y4)(y - 2)(y - 4), because (y2)(y4)=y24y2y+8=y26y+8(y - 2)(y - 4) = y^2 - 4y - 2y + 8 = y^2 - 6y + 8.
  3. Substitute and Expand: Substitute back (3x2x)(3x^2 - x) for yy We now replace yy with (3x2x)(3x^2 - x) in the factors we found. So, (y2)(y4)(y - 2)(y - 4) becomes ((3x2x)2)((3x2x)4)((3x^2 - x) - 2)((3x^2 - x) - 4).
  4. Find Linear Factors: Expand the factors to find the linear factors\newlineWe need to expand ((3x2x)2)((3x^2 - x) - 2) and ((3x2x)4)((3x^2 - x) - 4) to find the linear factors. First, we simplify the expressions:\newline(3x2x2)=(3x23x+2x2)=3x(x1)+2(x1)=(3x+2)(x1)(3x^2 - x - 2) = (3x^2 - 3x + 2x - 2) = 3x(x - 1) + 2(x - 1) = (3x + 2)(x - 1)\newline(3x2x4)=(3x23x+2x4)=3x(x1)+2(x2)=(3x+2)(x2)(3x^2 - x - 4) = (3x^2 - 3x + 2x - 4) = 3x(x - 1) + 2(x - 2) = (3x + 2)(x - 2)
  5. Write Product of Factors: Write the product of four linear factors\newlineThe product of the four linear factors is then (3x+2)(x1)(3x+2)(x2)(3x + 2)(x - 1)(3x + 2)(x - 2). However, we notice that (3x+2)(3x + 2) is repeated, so we can write the factors as (3x+2)2(x1)(x2)(3x + 2)^2(x - 1)(x - 2).

More problems from Identify factors