Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Re-write the quadratic function below in Standard Form

y=6(x-1)^(2)+2
Answer: 
y=

Re-write the quadratic function below in Standard Form\newliney=6(x1)2+2 y=6(x-1)^{2}+2 \newlineAnswer: y= y=

Full solution

Q. Re-write the quadratic function below in Standard Form\newliney=6(x1)2+2 y=6(x-1)^{2}+2 \newlineAnswer: y= y=
  1. Expand squared term: Expand the squared term.\newlineWe need to expand the term (x1)2 (x-1)^2 to rewrite the quadratic function in standard form.\newlineUsing the identity (ab)2=a22ab+b2 (a-b)^2 = a^2 - 2ab + b^2 , we get:\newline(x1)2=x22(x)(1)+12 (x-1)^2 = x^2 - 2(x)(1) + 1^2 \newline(x1)2=x22x+1 (x-1)^2 = x^2 - 2x + 1
  2. Multiply expanded term: Multiply the expanded term by the coefficient.\newlineThe expanded term x22x+1 x^2 - 2x + 1 needs to be multiplied by the coefficient 66.\newliney=6(x22x+1) y = 6(x^2 - 2x + 1) \newlineDistribute the 66 to each term inside the parentheses:\newliney=6x212x+6 y = 6x^2 - 12x + 6
  3. Add constant term: Add the constant term to the expression.\newlineThe constant term outside the parentheses is +22, so we add it to the expression we obtained in Step 22.\newliney=6x212x+6+2 y = 6x^2 - 12x + 6 + 2 \newlineCombine like terms:\newliney=6x212x+8 y = 6x^2 - 12x + 8

More problems from Write a quadratic function from its zeros