Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rationalise the denominators of 12+3+5\frac{1}{\sqrt{2}} + \sqrt{3} + \sqrt{5}

Full solution

Q. Rationalise the denominators of 12+3+5\frac{1}{\sqrt{2}} + \sqrt{3} + \sqrt{5}
  1. Multiply by Conjugate: To rationalize the denominator of the expression 12+3+5\frac{1}{\sqrt{2} + \sqrt{3} + \sqrt{5}}, we need to multiply the numerator and the denominator by the conjugate of the denominator. However, in this case, the denominator is not a simple binomial, but a sum of three square roots. We will need to rationalize step by step, starting with two terms at a time.
  2. Deal with 2\sqrt{2} and 3\sqrt{3}: First, let's rationalize the denominator by dealing with 2\sqrt{2} and 3\sqrt{3}. We will multiply the numerator and the denominator by the conjugate of (2+3)(\sqrt{2} + \sqrt{3}), which is (23)(\sqrt{2} - \sqrt{3}).\newline1(2+3+5)×(23)(23)\frac{1}{(\sqrt{2} + \sqrt{3} + \sqrt{5})} \times \frac{(\sqrt{2} - \sqrt{3})}{(\sqrt{2} - \sqrt{3})}
  3. Deal with 1-1 and 10\sqrt{10}: Now, let's perform the multiplication in the denominator:\newline(2+3+5)×(23)=(2×2)(3×2)+(5×2)+(2×3)(3×3)+(5×3)(\sqrt{2} + \sqrt{3} + \sqrt{5}) \times (\sqrt{2} - \sqrt{3}) = (\sqrt{2} \times \sqrt{2}) - (\sqrt{3} \times \sqrt{2}) + (\sqrt{5} \times \sqrt{2}) + (\sqrt{2} \times \sqrt{3}) - (\sqrt{3} \times \sqrt{3}) + (\sqrt{5} \times \sqrt{3})\newlineThis simplifies to:\newline26+10+63+152 - \sqrt{6} + \sqrt{10} + \sqrt{6} - 3 + \sqrt{15}\newlineWhich further simplifies to:\newline1+10+15-1 + \sqrt{10} + \sqrt{15}
  4. Deal with 9-9 and 150\sqrt{150}: Now we have a new expression:\newline(1×(23))/(1+10+15)(1 \times (\sqrt{2} - \sqrt{3})) / (-1 + \sqrt{10} + \sqrt{15})\newlineThis simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})
  5. Deal with 9-9 and 150\sqrt{150}: Now we have a new expression:\newline(1×(23))/(1+10+15)(1 \times (\sqrt{2} - \sqrt{3})) / (-1 + \sqrt{10} + \sqrt{15})\newlineThis simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})Next, we need to rationalize the denominator again, this time dealing with 1-1 and 10\sqrt{10}. We will multiply the numerator and the denominator by the conjugate of (1+10)(-1 + \sqrt{10}), which is (110)(-1 - \sqrt{10}).\newline((23)/(1+10+15))×((110)/(110))((\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})) \times ((-1 - \sqrt{10}) / (-1 - \sqrt{10}))
  6. Deal with 9-9 and 150\sqrt{150}: Now we have a new expression:\newline(1×(23))/(1+10+15)(1 \times (\sqrt{2} - \sqrt{3})) / (-1 + \sqrt{10} + \sqrt{15})\newlineThis simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})Next, we need to rationalize the denominator again, this time dealing with 1-1 and 10\sqrt{10}. We will multiply the numerator and the denominator by the conjugate of (1+10)(-1 + \sqrt{10}), which is (110)(-1 - \sqrt{10}).\newline((23)/(1+10+15))×((110)/(110))((\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})) \times ((-1 - \sqrt{10}) / (-1 - \sqrt{10}))Perform the multiplication in the denominator:\newline(1+10+15)×(110)=(1×1)+(10×1)+(15×1)(10×1)(10×10)(15×10)(-1 + \sqrt{10} + \sqrt{15}) \times (-1 - \sqrt{10}) = (-1 \times -1) + (\sqrt{10} \times -1) + (\sqrt{15} \times -1) - (\sqrt{10} \times -1) - (\sqrt{10} \times \sqrt{10}) - (\sqrt{15} \times \sqrt{10})\newlineThis simplifies to:\newline150\sqrt{150}00\newlineWhich further simplifies to:\newline150\sqrt{150}11
  7. Deal with 9-9 and 150\sqrt{150}: Now we have a new expression:\newline(1×(23))/(1+10+15)(1 \times (\sqrt{2} - \sqrt{3})) / (-1 + \sqrt{10} + \sqrt{15})\newlineThis simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})Next, we need to rationalize the denominator again, this time dealing with 1-1 and 10\sqrt{10}. We will multiply the numerator and the denominator by the conjugate of (1+10)(-1 + \sqrt{10}), which is (110)(-1 - \sqrt{10}).\newline((23)/(1+10+15))×((110)/(110))((\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})) \times ((-1 - \sqrt{10}) / (-1 - \sqrt{10}))Perform the multiplication in the denominator:\newline(1+10+15)×(110)=(1×1)+(10×1)+(15×1)(10×1)(10×10)(15×10)(-1 + \sqrt{10} + \sqrt{15}) \times (-1 - \sqrt{10}) = (-1 \times -1) + (\sqrt{10} \times -1) + (\sqrt{15} \times -1) - (\sqrt{10} \times -1) - (\sqrt{10} \times \sqrt{10}) - (\sqrt{15} \times \sqrt{10})\newlineThis simplifies to:\newline11015+10101501 - \sqrt{10} - \sqrt{15} + \sqrt{10} - 10 - \sqrt{150}\newlineWhich further simplifies to:\newline9150-9 - \sqrt{150}Now we have a new expression:\newline((23)×(110))/(9150)((\sqrt{2} - \sqrt{3}) \times (-1 - \sqrt{10})) / (-9 - \sqrt{150})\newlineThis simplifies to:\newline(220+3+30)/(9150)(-\sqrt{2} - \sqrt{20} + \sqrt{3} + \sqrt{30}) / (-9 - \sqrt{150})
  8. Deal with 9-9 and 150\sqrt{150}: Now we have a new expression:\newline(1×(23))/(1+10+15)(1 \times (\sqrt{2} - \sqrt{3})) / (-1 + \sqrt{10} + \sqrt{15})\newlineThis simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})Next, we need to rationalize the denominator again, this time dealing with 1-1 and 10\sqrt{10}. We will multiply the numerator and the denominator by the conjugate of (1+10)(-1 + \sqrt{10}), which is (110)(-1 - \sqrt{10}).\newline((23)/(1+10+15))×((110)/(110))((\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})) \times ((-1 - \sqrt{10}) / (-1 - \sqrt{10}))Perform the multiplication in the denominator:\newline(1+10+15)×(110)=(1×1)+(10×1)+(15×1)(10×1)(10×10)(15×10)(-1 + \sqrt{10} + \sqrt{15}) \times (-1 - \sqrt{10}) = (-1 \times -1) + (\sqrt{10} \times -1) + (\sqrt{15} \times -1) - (\sqrt{10} \times -1) - (\sqrt{10} \times \sqrt{10}) - (\sqrt{15} \times \sqrt{10})\newlineThis simplifies to:\newline11015+10101501 - \sqrt{10} - \sqrt{15} + \sqrt{10} - 10 - \sqrt{150}\newlineWhich further simplifies to:\newline9150-9 - \sqrt{150}Now we have a new expression:\newline((23)×(110))/(9150)((\sqrt{2} - \sqrt{3}) \times (-1 - \sqrt{10})) / (-9 - \sqrt{150})\newlineThis simplifies to:\newline(220+3+30)/(9150)(-\sqrt{2} - \sqrt{20} + \sqrt{3} + \sqrt{30}) / (-9 - \sqrt{150})Finally, we need to rationalize the denominator one last time, dealing with 9-9 and 150\sqrt{150}. We will multiply the numerator and the denominator by the conjugate of (9+150)(-9 + \sqrt{150}), which is (9150)(-9 - \sqrt{150}).\newline((220+3+30)/(9150))×((9+150)/(9+150))((-\sqrt{2} - \sqrt{20} + \sqrt{3} + \sqrt{30}) / (-9 - \sqrt{150})) \times ((-9 + \sqrt{150}) / (-9 + \sqrt{150}))
  9. Deal with 9-9 and 150\sqrt{150}: Now we have a new expression:\newline(1×(23))/(1+10+15)(1 \times (\sqrt{2} - \sqrt{3})) / (-1 + \sqrt{10} + \sqrt{15})\newlineThis simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})Next, we need to rationalize the denominator again, this time dealing with 1-1 and 10\sqrt{10}. We will multiply the numerator and the denominator by the conjugate of (1+10)(-1 + \sqrt{10}), which is (110)(-1 - \sqrt{10}).\newline((23)/(1+10+15))×((110)/(110))((\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})) \times ((-1 - \sqrt{10}) / (-1 - \sqrt{10}))Perform the multiplication in the denominator:\newline(1+10+15)×(110)=(1×1)+(10×1)+(15×1)(10×1)(10×10)(15×10)(-1 + \sqrt{10} + \sqrt{15}) \times (-1 - \sqrt{10}) = (-1 \times -1) + (\sqrt{10} \times -1) + (\sqrt{15} \times -1) - (\sqrt{10} \times -1) - (\sqrt{10} \times \sqrt{10}) - (\sqrt{15} \times \sqrt{10})\newlineThis simplifies to:\newline11015+10101501 - \sqrt{10} - \sqrt{15} + \sqrt{10} - 10 - \sqrt{150}\newlineWhich further simplifies to:\newline9150-9 - \sqrt{150}Now we have a new expression:\newline((23)×(110))/(9150)((\sqrt{2} - \sqrt{3}) \times (-1 - \sqrt{10})) / (-9 - \sqrt{150})\newlineThis simplifies to:\newline(220+3+30)/(9150)(-\sqrt{2} - \sqrt{20} + \sqrt{3} + \sqrt{30}) / (-9 - \sqrt{150})Finally, we need to rationalize the denominator one last time, dealing with 9-9 and 150\sqrt{150}. We will multiply the numerator and the denominator by the conjugate of (9+150)(-9 + \sqrt{150}), which is (9150)(-9 - \sqrt{150}).\newline((220+3+30)/(9150))×((9+150)/(9+150))((-\sqrt{2} - \sqrt{20} + \sqrt{3} + \sqrt{30}) / (-9 - \sqrt{150})) \times ((-9 + \sqrt{150}) / (-9 + \sqrt{150}))Perform the multiplication in the denominator:\newline(9150)×(9+150)=(9×9)+(150×9)(150×9)+(150×150)(-9 - \sqrt{150}) \times (-9 + \sqrt{150}) = (-9 \times -9) + (\sqrt{150} \times 9) - (\sqrt{150} \times 9) + (\sqrt{150} \times \sqrt{150})\newlineThis simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})00\newlineWhich further simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})11
  10. Deal with 9-9 and 150\sqrt{150}: Now we have a new expression:\newline(1×(23))/(1+10+15)(1 \times (\sqrt{2} - \sqrt{3})) / (-1 + \sqrt{10} + \sqrt{15})\newlineThis simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})Next, we need to rationalize the denominator again, this time dealing with 1-1 and 10\sqrt{10}. We will multiply the numerator and the denominator by the conjugate of (1+10)(-1 + \sqrt{10}), which is (110)(-1 - \sqrt{10}).\newline((23)/(1+10+15))×((110)/(110))((\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})) \times ((-1 - \sqrt{10}) / (-1 - \sqrt{10}))Perform the multiplication in the denominator:\newline(1+10+15)×(110)=(1×1)+(10×1)+(15×1)(10×1)(10×10)(15×10)(-1 + \sqrt{10} + \sqrt{15}) \times (-1 - \sqrt{10}) = (-1 \times -1) + (\sqrt{10} \times -1) + (\sqrt{15} \times -1) - (\sqrt{10} \times -1) - (\sqrt{10} \times \sqrt{10}) - (\sqrt{15} \times \sqrt{10})\newlineThis simplifies to:\newline11015+10101501 - \sqrt{10} - \sqrt{15} + \sqrt{10} - 10 - \sqrt{150}\newlineWhich further simplifies to:\newline9150-9 - \sqrt{150}Now we have a new expression:\newline((23)×(110))/(9150)((\sqrt{2} - \sqrt{3}) \times (-1 - \sqrt{10})) / (-9 - \sqrt{150})\newlineThis simplifies to:\newline(220+3+30)/(9150)(-\sqrt{2} - \sqrt{20} + \sqrt{3} + \sqrt{30}) / (-9 - \sqrt{150})Finally, we need to rationalize the denominator one last time, dealing with 9-9 and 150\sqrt{150}. We will multiply the numerator and the denominator by the conjugate of (9+150)(-9 + \sqrt{150}), which is (9150)(-9 - \sqrt{150}).\newline((220+3+30)/(9150))×((9+150)/(9+150))((-\sqrt{2} - \sqrt{20} + \sqrt{3} + \sqrt{30}) / (-9 - \sqrt{150})) \times ((-9 + \sqrt{150}) / (-9 + \sqrt{150}))Perform the multiplication in the denominator:\newline(9150)×(9+150)=(9×9)+(150×9)(150×9)+(150×150)(-9 - \sqrt{150}) \times (-9 + \sqrt{150}) = (-9 \times -9) + (\sqrt{150} \times 9) - (\sqrt{150} \times 9) + (\sqrt{150} \times \sqrt{150})\newlineThis simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})00\newlineWhich further simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})11Now we have a new expression:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})22\newlineThis simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})33
  11. Deal with 9-9 and 150\sqrt{150}: Now we have a new expression:\newline(1×(23))/(1+10+15)(1 \times (\sqrt{2} - \sqrt{3})) / (-1 + \sqrt{10} + \sqrt{15})\newlineThis simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})Next, we need to rationalize the denominator again, this time dealing with 1-1 and 10\sqrt{10}. We will multiply the numerator and the denominator by the conjugate of (1+10)(-1 + \sqrt{10}), which is (110)(-1 - \sqrt{10}).\newline((23)/(1+10+15))×((110)/(110))((\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})) \times ((-1 - \sqrt{10}) / (-1 - \sqrt{10}))Perform the multiplication in the denominator:\newline(1+10+15)×(110)=(1×1)+(10×1)+(15×1)(10×1)(10×10)(15×10)(-1 + \sqrt{10} + \sqrt{15}) \times (-1 - \sqrt{10}) = (-1 \times -1) + (\sqrt{10} \times -1) + (\sqrt{15} \times -1) - (\sqrt{10} \times -1) - (\sqrt{10} \times \sqrt{10}) - (\sqrt{15} \times \sqrt{10})\newlineThis simplifies to:\newline11015+10101501 - \sqrt{10} - \sqrt{15} + \sqrt{10} - 10 - \sqrt{150}\newlineWhich further simplifies to:\newline9150-9 - \sqrt{150}Now we have a new expression:\newline((23)×(110))/(9150)((\sqrt{2} - \sqrt{3}) \times (-1 - \sqrt{10})) / (-9 - \sqrt{150})\newlineThis simplifies to:\newline(220+3+30)/(9150)(-\sqrt{2} - \sqrt{20} + \sqrt{3} + \sqrt{30}) / (-9 - \sqrt{150})Finally, we need to rationalize the denominator one last time, dealing with 9-9 and 150\sqrt{150}. We will multiply the numerator and the denominator by the conjugate of (9+150)(-9 + \sqrt{150}), which is (9150)(-9 - \sqrt{150}).\newline((220+3+30)/(9150))×((9+150)/(9+150))((-\sqrt{2} - \sqrt{20} + \sqrt{3} + \sqrt{30}) / (-9 - \sqrt{150})) \times ((-9 + \sqrt{150}) / (-9 + \sqrt{150}))Perform the multiplication in the denominator:\newline(9150)×(9+150)=(9×9)+(150×9)(150×9)+(150×150)(-9 - \sqrt{150}) \times (-9 + \sqrt{150}) = (-9 \times -9) + (\sqrt{150} \times 9) - (\sqrt{150} \times 9) + (\sqrt{150} \times \sqrt{150})\newlineThis simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})00\newlineWhich further simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})11Now we have a new expression:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})22\newlineThis simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})33Simplify the numerator by combining like terms and then divide each term by 150\sqrt{150}00:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})44\newlineThis simplifies to:\newline(23)/(1+10+15)(\sqrt{2} - \sqrt{3}) / (-1 + \sqrt{10} + \sqrt{15})55

More problems from Simplify radical expressions using conjugates