Q. qz9+r is a factor of 38z18+bz9+50. What is the highest possible value of b?
Understand Factorization: Step Title: Understand the FactorizationConcise Step Description: Recognize that if qz9+r is a factor of 38z18+bz9+50, then for some polynomial p(z), 38z18+bz9+50=(qz9+r)⋅p(z).Step Calculation: No specific calculation yet.
Set Up Equation: Step Title: Set Up the EquationConcise Step Description: Assume p(z)=az9+s to match the degrees of the polynomial on both sides.Step Calculation: (qz9+r)(az9+s)=qaz18+(qs+ar)z9+rs.
Compare Coefficients: Step Title: Compare CoefficientsConcise Step Description: Equate the coefficients from the expanded form to those in 38z18+bz9+50.Step Calculation: qa=38, qs+ar=b, rs=50.
Solve for b: Step Title: Solve for bConcise Step Description: Focus on solving for b using the equation qs+ar=b.Step Calculation: Since qa=38, let's choose q=1 and a=38 (simplest case). Then, b=s+38r.
Maximize b: Step Title: Maximize bConcise Step Description: Maximize b by choosing values for r and s that satisfy rs=50 and maximize s+38r.Step Calculation: If r=1, s=50 (since rs=50), then b0.
Check Higher Values: Step Title: Check for Higher ValuesConcise Step Description: Check if larger values of r give a higher b.Step Calculation: If r=2, s=25, then b=25+38×2=101.
Continue Checking: Step Title: Continue CheckingConcise Step Description: Continue to check for even larger values of r.Step Calculation: If r=5, s=10, then b=10+38×5=200.
Final Check: Step Title: Final CheckConcise Step Description: Check if any other values of r and s can maximize b further.Step Calculation: If r=10, s=5, then b=5+38×10=385.