Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Question
Use the quotient rule to evaluate 
h^(')(a) for the given function 
h(x) and 
a.

h(x)=(3x^(2))/(x^(2)+9x+9)quad a=-3

Question\newlineUse the quotient rule to evaluate h(a) h^{\prime}(a) for the given function h(x) h(x) and a a .\newlineh(x)=3x2x2+9x+9a=3 h(x)=\frac{3 x^{2}}{x^{2}+9 x+9} \quad a=-3

Full solution

Q. Question\newlineUse the quotient rule to evaluate h(a) h^{\prime}(a) for the given function h(x) h(x) and a a .\newlineh(x)=3x2x2+9x+9a=3 h(x)=\frac{3 x^{2}}{x^{2}+9 x+9} \quad a=-3
  1. Identify u(x)u(x) and v(x)v(x): To find h(a)h'(a), we first need to find the derivative of h(x)h(x) using the quotient rule. The quotient rule states that if we have a function h(x)=u(x)v(x)h(x) = \frac{u(x)}{v(x)}, then h(x)=u(x)v(x)u(x)v(x)(v(x))2h'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}. Let's identify u(x)u(x) and v(x)v(x) for our function.\newlineu(x)=3x2u(x) = 3x^2 and v(x)=x2+9x+9v(x) = x^2 + 9x + 9.
  2. Find Derivatives of u(x)u(x) and v(x)v(x): Next, we need to find the derivatives of u(x)u(x) and v(x)v(x). The derivative of u(x)u(x) with respect to xx is u(x)=ddx[3x2]=6xu'(x) = \frac{d}{dx} [3x^2] = 6x. The derivative of v(x)v(x) with respect to xx is v(x)=ddx[x2+9x+9]=2x+9v'(x) = \frac{d}{dx} [x^2 + 9x + 9] = 2x + 9.
  3. Apply Quotient Rule for h(x)h'(x): Now we apply the quotient rule to find h(x)h'(x). Using the derivatives we found:\newlineh(x)=u(x)v(x)u(x)v(x)(v(x))2=6x(x2+9x+9)3x2(2x+9)(x2+9x+9)2.h'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2} = \frac{6x(x^2 + 9x + 9) - 3x^2(2x + 9)}{(x^2 + 9x + 9)^2}.
  4. Simplify Numerator of h(x)h'(x): We simplify the numerator of h(x)h'(x):6x(x2+9x+9)3x2(2x+9)=6x3+54x2+54x6x327x26x(x^2 + 9x + 9) - 3x^2(2x + 9) = 6x^3 + 54x^2 + 54x - 6x^3 - 27x^2=27x2+54x.= 27x^2 + 54x.
  5. Substitute xx with aa: Now we have h(x)=27x2+54x(x2+9x+9)2h'(x) = \frac{27x^2 + 54x}{(x^2 + 9x + 9)^2}. To find h(a)h'(a) when a=3a = -3, we substitute xx with 3-3:
    h(3)=27(3)2+54(3)((3)2+9(3)+9)2h'(-3) = \frac{27(-3)^2 + 54(-3)}{((-3)^2 + 9(-3) + 9)^2}
    h(3)=27(9)162(927+9)2\phantom{h'(-3)} = \frac{27(9) - 162}{(9 - 27 + 9)^2}
    h(3)=243162(9)2\phantom{h'(-3)} = \frac{243 - 162}{(-9)^2}.
  6. Simplify Final Expression: Simplify the expression:\newlineh(3)=8181h'(-3) = \frac{81}{81}\newline = 11.

More problems from Transformations of quadratic functions