Q. QuestionUse the quotient rule to evaluate h′(a) for the given function h(x) and a.h(x)=x2+9x+93x2a=−3
Identify u(x) and v(x): To find h′(a), we first need to find the derivative of h(x) using the quotient rule. The quotient rule states that if we have a function h(x)=v(x)u(x), then h′(x)=(v(x))2u′(x)v(x)−u(x)v′(x). Let's identify u(x) and v(x) for our function.u(x)=3x2 and v(x)=x2+9x+9.
Find Derivatives of u(x) and v(x): Next, we need to find the derivatives of u(x) and v(x). The derivative of u(x) with respect to x is u′(x)=dxd[3x2]=6x. The derivative of v(x) with respect to x is v′(x)=dxd[x2+9x+9]=2x+9.
Apply Quotient Rule for h′(x): Now we apply the quotient rule to find h′(x). Using the derivatives we found:h′(x)=(v(x))2u′(x)v(x)−u(x)v′(x)=(x2+9x+9)26x(x2+9x+9)−3x2(2x+9).
Simplify Numerator of h′(x): We simplify the numerator of h′(x):6x(x2+9x+9)−3x2(2x+9)=6x3+54x2+54x−6x3−27x2=27x2+54x.
Substitute x with a: Now we have h′(x)=(x2+9x+9)227x2+54x. To find h′(a) when a=−3, we substitute x with −3: h′(−3)=((−3)2+9(−3)+9)227(−3)2+54(−3) h′(−3)=(9−27+9)227(9)−162 h′(−3)=(−9)2243−162.
Simplify Final Expression: Simplify the expression:h′(−3)=8181 = 1.
More problems from Transformations of quadratic functions