Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find k^(')(x) if k(x)=-(5)/(x^(3))*e^(-3x^(4)+4x^(2)).

Find k(x) k^{\prime}(x) if k(x)=5x3e3x4+4x2 k(x)=-\frac{5}{x^{3}} \cdot e^{-3 x^{4}+4 x^{2}} .

Full solution

Q. Find k(x) k^{\prime}(x) if k(x)=5x3e3x4+4x2 k(x)=-\frac{5}{x^{3}} \cdot e^{-3 x^{4}+4 x^{2}} .
  1. Identify Functions: We need to find the derivative of the function k(x)=(5x3)e(3x4+4x2)k(x) = -\left(\frac{5}{x^3}\right)e^{(-3x^4 + 4x^2)}. This requires the use of the product rule and the chain rule, as we have a product of two functions: 5x3-\frac{5}{x^3} and e(3x4+4x2)e^{(-3x^4 + 4x^2)}.
  2. Find u(x)u'(x): First, let's identify the two functions we will be differentiating. Let u(x)=5x3u(x) = -\frac{5}{x^3} and v(x)=e(3x4+4x2)v(x) = e^{(-3x^4 + 4x^2)}. We will find the derivatives u(x)u'(x) and v(x)v'(x) separately.
  3. Find v(x)v'(x): To find u(x)u'(x), we differentiate 5x3-\frac{5}{x^3} with respect to xx. This is a power rule problem, and the derivative of xnx^n is nx(n1)n\cdot x^{(n-1)}. So, u(x)=5(3)x(31)=15x4u'(x) = -5 \cdot (-3) \cdot x^{(-3 - 1)} = 15x^{-4}.
  4. Apply Chain Rule to v(x)v(x): Now, we need to find v(x)v'(x). Since v(x)v(x) is an exponential function with a composite function in the exponent, we will use the chain rule. The derivative of ef(x)e^{f(x)} is ef(x)e^{f(x)}*f(x)f'(x), where f(x)=3x4+4x2f(x) = -3x^4 + 4x^2.
  5. Apply Chain Rule to v(x)v'(x): We find the derivative of f(x)=3x4+4x2f(x) = -3x^4 + 4x^2. Using the power rule, f(x)=34x3+42x=12x3+8xf'(x) = -3 \cdot 4x^3 + 4 \cdot 2x = -12x^3 + 8x.
  6. Apply Product Rule to k(x)k'(x): Now we apply the chain rule to find v(x)v'(x). v(x)=e(3x4+4x2)(12x3+8x)v'(x) = e^{(-3x^4 + 4x^2)} * (-12x^3 + 8x).
  7. Substitute Derivatives: With u(x)u'(x) and v(x)v'(x) found, we can now apply the product rule to find k(x)k'(x). The product rule states that (uv)=uv+uv(uv)' = u'v + uv'. So, k(x)=u(x)v(x)+u(x)v(x)k'(x) = u'(x)v(x) + u(x)v'(x).
  8. Simplify Expression: Substitute the derivatives and original functions into the product rule formula. k(x)=(15x4)(e3x4+4x2)+(5x3)(e3x4+4x2(12x3+8x))k'(x) = (15x^{-4}) \cdot (e^{-3x^4 + 4x^2}) + \left(-\frac{5}{x^3}\right) \cdot (e^{-3x^4 + 4x^2} \cdot (-12x^3 + 8x)).
  9. Further Simplify Expression: Simplify the expression by combining like terms and factoring out common factors if possible. k(x)=15x4e3x4+4x25x3e3x4+4x2(12x3+8x)k'(x) = 15x^{-4}e^{-3x^4 + 4x^2} - \frac{5}{x^3}e^{-3x^4 + 4x^2}(-12x^3 + 8x).
  10. Combine Terms: Further simplify the expression by multiplying through the parentheses. k(x)=15x4e3x4+4x2+(5x3)e3x4+4x2(12x3)(5x3)e3x4+4x2(8x).k'(x) = 15x^{-4}e^{-3x^4 + 4x^2} + \left(\frac{5}{x^3}\right)e^{-3x^4 + 4x^2}(12x^3) - \left(\frac{5}{x^3}\right)e^{-3x^4 + 4x^2}(8x).
  11. Final Derivative Form: Combine the terms with common factors. k(x)=15x4e3x4+4x2+60e3x4+4x240x2e3x4+4x2k'(x) = 15x^{-4}e^{-3x^4 + 4x^2} + 60e^{-3x^4 + 4x^2} - 40x^{-2}e^{-3x^4 + 4x^2}.
  12. Final Derivative Form: Combine the terms with common factors. k(x)=15x4e3x4+4x2+60e3x4+4x240x2e3x4+4x2k'(x) = 15x^{-4}e^{-3x^4 + 4x^2} + 60e^{-3x^4 + 4x^2} - 40x^{-2}e^{-3x^4 + 4x^2}. The final simplified form of the derivative is k(x)=e3x4+4x2(15x4+6040x2)k'(x) = e^{-3x^4 + 4x^2}(15x^{-4} + 60 - 40x^{-2}).

More problems from Multiplication with rational exponents