Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


Consider the functions 
g and 
h given by 
g(x)=4^(x) and 
h(x)=16^(x+2). In the 
xy-plane, what is the 
x-coordinate of the point of intersection of the graphs of 
g and 
h ?
(A) -4
(B) -2
(C) 0
(D) 2

\newlineConsider the functions g g and h h given by g(x)=4x g(x)=4^{x} and h(x)=16x+2 h(x)=16^{x+2} . In the xy x y -plane, what is the x x -coordinate of the point of intersection of the graphs of g g and h h ?\newline(A) 4-4\newline(B) 2-2\newline(C) 00\newline(D) 22

Full solution

Q. \newlineConsider the functions g g and h h given by g(x)=4x g(x)=4^{x} and h(x)=16x+2 h(x)=16^{x+2} . In the xy x y -plane, what is the x x -coordinate of the point of intersection of the graphs of g g and h h ?\newline(A) 4-4\newline(B) 2-2\newline(C) 00\newline(D) 22
  1. Set g(x)g(x) equal: Set g(x)g(x) equal to h(x)h(x) to find the xx-coordinate of the intersection point.\newlineg(x)=h(x)g(x) = h(x)\newline4x=16(x+2)4^x = 16^{(x+2)}
  2. Recognize base relationship: Recognize that 1616 is 44 squared (424^2).\newline4x=(42)(x+2)4^x = (4^2)^{(x+2)}
  3. Apply power rule: Apply the power of a power rule: (ab)c=a(bc)(a^b)^c = a^{(b*c)}.4x=42(x+2)4^x = 4^{2*(x+2)}
  4. Set exponents equal: Since the bases are the same, set the exponents equal to each other. x=2(x+2)x = 2*(x+2)
  5. Distribute and simplify: Distribute the 22 on the right side of the equation.x=2x+4x = 2x + 4
  6. Subtract to solve: Subtract 2x2x from both sides to solve for xx.\newlinex2x=4x - 2x = 4
  7. Combine like terms: Combine like terms.\newline1x=4-1x = 4

More problems from Transformations of quadratic functions