Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Q6: 
y(x)=int Adx+(d)/(dx)(A), where 
A=ln(sqrt((x-1)/(2))), then the value of 
y(2) is?

Q66: y(x)=Adx+ddx(A) y(x)=\int A d x+\frac{d}{d x}(A) , where A=ln(x12) A=\ln \left(\sqrt{\frac{x-1}{2}}\right) , then the value of y(2) y(2) is?

Full solution

Q. Q66: y(x)=Adx+ddx(A) y(x)=\int A d x+\frac{d}{d x}(A) , where A=ln(x12) A=\ln \left(\sqrt{\frac{x-1}{2}}\right) , then the value of y(2) y(2) is?
  1. Find Expression for A: First, we need to find the expression for A, which is given as A=ln((x1)/2)A = \ln(\sqrt{(x-1)/2}). We can simplify this expression by using the property of logarithms that ln(x)=(1/2)ln(x)\ln(\sqrt{x}) = (1/2)\ln(x).\newlineCalculation: A=(1/2)ln((x1)/2)A = (1/2)\ln((x-1)/2)
  2. Find Derivative of A: Next, we need to find the derivative of AA with respect to xx, which is denoted as ddx(A)\frac{d}{dx}(A). To do this, we use the chain rule and the derivative of ln(x)\ln(x) which is 1x\frac{1}{x}.\newlineCalculation: ddx(A)=12(1(x12))ddx(x12)=12(2x1)(12)=1x1\frac{d}{dx}(A) = \frac{1}{2}\left(\frac{1}{\left(\frac{x-1}{2}\right)}\right)\frac{d}{dx}\left(\frac{x-1}{2}\right) = \frac{1}{2}\left(\frac{2}{x-1}\right)\left(\frac{1}{2}\right) = \frac{1}{x-1}
  3. Find Integral of A: Now, we need to find the integral of AA with respect to xx. The integral of ln(x)\ln(x) is xln(x)xx\ln(x) - x, so we apply this to our function AA.
    Calculation: \int A \, dx = \int \frac{\(1\)}{\(2\)}\ln\left(\frac{x\(-1\)}{\(2\)}\right) dx = \frac{\(1\)}{\(2\)}\left(x\ln\left(\frac{x\(-1\)}{\(2\)}\right) - (x\(-1)\right)
  4. Combine Integral and Derivative: We now have the expressions for both the integral of AA and the derivative of AA. The function y(x)y(x) is the sum of these two expressions. So, we add them together.\newlineCalculation: y(x)=12(xln(x12)(x1))+1x1y(x) = \frac{1}{2}(x\ln(\frac{x-1}{2}) - (x-1)) + \frac{1}{x-1}
  5. Evaluate y(2)y(2): Finally, we need to evaluate y(x)y(x) at x=2x = 2. We substitute xx with 22 in the expression we found for y(x)y(x).\newlineCalculation: y(2)=(12)(2ln((21)2)(21))+1(21)=(12)(2ln(12)1)+1y(2) = (\frac{1}{2})(2\ln(\frac{(2-1)}{2}) - (2-1)) + \frac{1}{(2-1)} = (\frac{1}{2})(2\ln(\frac{1}{2}) - 1) + 1
  6. Simplify Final Expression: We can further simplify the expression by calculating the natural logarithm of 12\frac{1}{2} and the arithmetic operations.\newlineCalculation: y(2)=(12)(2(ln(2))1)+1=(ln(2)12)+1=ln(2)+12y(2) = \left(\frac{1}{2}\right)\left(2(-\ln(2)) - 1\right) + 1 = (-\ln(2) - \frac{1}{2}) + 1 = -\ln(2) + \frac{1}{2}

More problems from Evaluate radical expressions