Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that (8x^(2)-6x+3)/((2x-1)^(2))=A+(B)/(2x-1)+(C)/((2x-1)^(2)), then 
A= _____, 
B= _____, 
C= _____

Given that 8x26x+3(2x1)2=A+B2x1+C(2x1)2 \frac{8 x^{2}-6 x+3}{(2 x-1)^{2}}=A+\frac{B}{2 x-1}+\frac{C}{(2 x-1)^{2}} , then A= _____, B= _____, C= _____

Full solution

Q. Given that 8x26x+3(2x1)2=A+B2x1+C(2x1)2 \frac{8 x^{2}-6 x+3}{(2 x-1)^{2}}=A+\frac{B}{2 x-1}+\frac{C}{(2 x-1)^{2}} , then A= _____, B= _____, C= _____
  1. Set up equation: Set up the equation for partial fraction decomposition.\newlineWe are given the equation:\newline(8x26x+3)/((2x1)2)=A+(B/(2x1))+(C/((2x1)2))(8x^2 - 6x + 3) / ((2x - 1)^2) = A + (B / (2x - 1)) + (C / ((2x - 1)^2))\newlineWe need to find the values of AA, BB, and CC.
  2. Clear fractions: Multiply both sides by the denominator to clear the fractions.\newlineMultiplying both sides by (2x1)2(2x - 1)^2, we get:\newline8x26x+3=A(2x1)2+B(2x1)+C8x^2 - 6x + 3 = A(2x - 1)^2 + B(2x - 1) + C
  3. Expand right side: Expand the right side of the equation.\newlineExpanding A(2x1)2A(2x - 1)^2 and B(2x1)B(2x - 1), we get:\newline8x26x+3=A(4x24x+1)+B(2x1)+C8x^2 - 6x + 3 = A(4x^2 - 4x + 1) + B(2x - 1) + C
  4. Equate coefficients: Equate the coefficients of like terms on both sides of the equation.\newlineFor the x2x^2 terms: 8=4A8 = 4A\newlineFor the xx terms: 6=4A+2B-6 = -4A + 2B\newlineFor the constant terms: 3=AB+C3 = A - B + C
  5. Solve for AA: Solve for AA from the x2x^2 terms.\newlineDividing both sides by 44, we get A=2A = 2.
  6. Solve for B: Substitute AA into the equation for the xx terms and solve for BB.\newline6=4(2)+2B-6 = -4(2) + 2B\newline6=8+2B-6 = -8 + 2B\newline2B=22B = 2\newlineB=1B = 1
  7. Solve for C: Substitute AA and BB into the equation for the constant terms and solve for CC.3=21+C3 = 2 - 1 + CC=32+1C = 3 - 2 + 1C=2C = 2

More problems from Transformations of quadratic functions