Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If the radius of a circle is (2)/(3)+(1)/(7). Find the circumference, area and also find the area of (1)/(4)^("th ") of the circle.

If the radius of a circle is 23+17 \frac{2}{3} + \frac{1}{7} . Find the circumference, area and also find the area of 14th  \frac{1}{4}^{\text {th }} of the circle.

Full solution

Q. If the radius of a circle is 23+17 \frac{2}{3} + \frac{1}{7} . Find the circumference, area and also find the area of 14th  \frac{1}{4}^{\text {th }} of the circle.
  1. Calculate Radius: Calculate the radius of the circle by adding the fractions 22/33 and 11/77.\newlineTo add fractions, we need a common denominator. The least common multiple of 33 and 77 is 2121. So we convert the fractions to have the same denominator and then add them.\newline23+17=2×73×7+1×37×3=1421+321=14+321=1721 \frac{2}{3} + \frac{1}{7} = \frac{2 \times 7}{3 \times 7} + \frac{1 \times 3}{7 \times 3} = \frac{14}{21} + \frac{3}{21} = \frac{14 + 3}{21} = \frac{17}{21}
  2. Calculate Circumference: Calculate the circumference of the circle using the formula C=2πr C = 2\pi r , where r r is the radius.\newlineC=2π×1721 C = 2\pi \times \frac{17}{21} \newlineC=34π21 C = \frac{34\pi}{21}
  3. Calculate Area: Calculate the area of the circle using the formula A=πr2 A = \pi r^2 , where r r is the radius.\newlineA=π×(1721)2 A = \pi \times \left(\frac{17}{21}\right)^2 \newlineA=π×289441 A = \pi \times \frac{289}{441} \newlineA=289π441 A = \frac{289\pi}{441}
  4. Calculate 11/44 Area: Calculate the area of 11/44 of the circle by dividing the total area by 44.\newlineArea of 1/4 of the circle=14×289π441 \text{Area of 1/4 of the circle} = \frac{1}{4} \times \frac{289\pi}{441} \newlineArea of 1/4 of the circle=289π441×4 \text{Area of 1/4 of the circle} = \frac{289\pi}{441 \times 4} \newlineArea of 1/4 of the circle=289π1764 \text{Area of 1/4 of the circle} = \frac{289\pi}{1764}

More problems from Find trigonometric ratios using the unit circle