Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Prove the identity:\newlinesin4xsinx=4cosxcos2x\frac{\sin 4x}{\sin x} = 4\cos x \cos 2x

Full solution

Q. Prove the identity:\newlinesin4xsinx=4cosxcos2x\frac{\sin 4x}{\sin x} = 4\cos x \cos 2x
  1. Apply double angle formula: Use the double angle formula for sine to express sin4x\sin 4x in terms of sin2x\sin 2x and cos2x\cos 2x. The double angle formula for sine is sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta. We can apply this formula to sin4x\sin 4x by setting θ=2x\theta = 2x, which gives us sin4x=2sin2xcos2x\sin 4x = 2\sin 2x \cos 2x.
  2. Apply formula to sin2x\sin 2x: Apply the double angle formula again to sin2x\sin 2x. Using the same double angle formula, sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta, we can express sin2x\sin 2x as 2sinxcosx2\sin x \cos x. So, sin4x\sin 4x becomes 2(2sinxcosx)cos2x2(2\sin x \cos x)\cos 2x.
  3. Substitute into original identity: Substitute the expression from Step 22 into the original identity.\newlineWe replace sin4x\sin 4x in the original identity sin4xsinx\frac{\sin 4x}{\sin x} with 2(2sinxcosx)cos2x2(2\sin x \cos x)\cos 2x to get 2(2sinxcosx)cos2xsinx\frac{2(2\sin x \cos x)\cos 2x}{\sin x}.
  4. Cancel out sinx\sin x: Simplify the expression by canceling out sinx\sin x. The sinx\sin x in the numerator and denominator cancel each other out, leaving us with 2(2cosxcos2x)2(2\cos x \cos 2x).
  5. Multiply constants: Simplify the expression further by multiplying the constants. Multiplying the constants 22 and 22 gives us 4cosxcos2x4\cos x \cos 2x, which is the right-hand side of the original identity.

More problems from Simplify rational expressions