Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Prove the identity.


cos^(4)x-sin^(4)x=cos 2x

7676. Prove the identity.\newlinecos4xsin4x=cos2x \cos ^{4} x-\sin ^{4} x=\cos 2 x

Full solution

Q. 7676. Prove the identity.\newlinecos4xsin4x=cos2x \cos ^{4} x-\sin ^{4} x=\cos 2 x
  1. Apply Pythagorean identity: We will start by using the Pythagorean identity sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1 to rewrite the left side of the equation in terms of cosines only.\newlinecos4xsin4x=(cos2(x))2(sin2(x))2\cos^{4}x - \sin^{4}x = (\cos^2(x))^2 - (\sin^2(x))^2\newlineWe can express sin2(x)\sin^2(x) as 1cos2(x)1 - \cos^2(x) to get:\newline(cos2(x))2(1cos2(x))2(\cos^2(x))^2 - (1 - \cos^2(x))^2
  2. Rewrite in terms of cosines: Now we will expand the squared terms: \newline(cos2(x))2(1cos2(x))2=cos4(x)(12cos2(x)+cos4(x))(\cos^2(x))^2 - (1 - \cos^2(x))^2 = \cos^4(x) - (1 - 2\cos^2(x) + \cos^4(x))
  3. Expand and simplify: Next, we simplify the expression by combining like terms: cos4(x)1+2cos2(x)cos4(x)=2cos2(x)1\cos^4(x) - 1 + 2\cos^2(x) - \cos^4(x) = 2\cos^2(x) - 1
  4. Use double angle formula: We recognize that 2cos2(x)12\cos^2(x) - 1 is the double angle formula for cosine:\newline2cos2(x)1=cos(2x)2\cos^2(x) - 1 = \cos(2x)
  5. Final result: We have shown that the left side of the equation simplifies to the right side: cos4xsin4x=cos(2x)\cos^{4}x - \sin^{4}x = \cos(2x)

More problems from Solve complex trigonomentric equations