Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Prove the identity.


(2(tan x-cot x))/(tan^(2)x-cot^(2)x)=sin 2x

8383. Prove the identity.\newline2(tanxcotx)tan2xcot2x=sin2x \frac{2(\tan x-\cot x)}{\tan ^{2} x-\cot ^{2} x}=\sin 2 x

Full solution

Q. 8383. Prove the identity.\newline2(tanxcotx)tan2xcot2x=sin2x \frac{2(\tan x-\cot x)}{\tan ^{2} x-\cot ^{2} x}=\sin 2 x
  1. Start Problem: Start with the left-hand side of the identity.\newlineWe have the expression 2(tanxcotx)tan2(x)cot2(x)\frac{2(\tan x - \cot x)}{\tan^2(x) - \cot^2(x)}.
  2. Recall Identities: Recall the Pythagorean identity for tangent and cotangent. \newlinetan2(x)+1=sec2(x)\tan^2(x) + 1 = \sec^2(x) and cot2(x)+1=csc2(x)\cot^2(x) + 1 = \csc^2(x).\newlineWe can rewrite the denominator of the left-hand side using these identities.\newlinetan2(x)cot2(x)=(sec2(x)1)(csc2(x)1)\tan^2(x) - \cot^2(x) = (\sec^2(x) - 1) - (\csc^2(x) - 1).
  3. Rewrite Denominator: Simplify the denominator. \newline(sec2(x)1)(csc2(x)1)=sec2(x)csc2(x)(\sec^2(x) - 1) - (\csc^2(x) - 1) = \sec^2(x) - \csc^2(x).
  4. Simplify Denominator: Use the reciprocal identities for sec(x)sec(x) and csc(x)csc(x).sec(x)=1cos(x)sec(x) = \frac{1}{\cos(x)} and csc(x)=1sin(x)csc(x) = \frac{1}{\sin(x)}.So, sec2(x)csc2(x)=(1cos2(x))(1sin2(x))sec^2(x) - csc^2(x) = \left(\frac{1}{\cos^2(x)}\right) - \left(\frac{1}{\sin^2(x)}\right).
  5. Use Reciprocal Identities: Find a common denominator for the terms in the denominator.\newline(1cos2(x))(1sin2(x))=sin2(x)cos2(x)sin2(x)cos2(x)(\frac{1}{\cos^2(x)}) - (\frac{1}{\sin^2(x)}) = \frac{\sin^2(x) - \cos^2(x)}{\sin^2(x)\cos^2(x)}.
  6. Find Common Denominator: Recall the double-angle identity for sine. \newlinesin(2x)=2sin(x)cos(x)\sin(2x) = 2\sin(x)\cos(x).\newlineWe can rewrite the numerator of the left-hand side using the tangent and cotangent definitions.\newlinetanx=sin(x)cos(x)\tan x = \frac{\sin(x)}{\cos(x)} and cotx=cos(x)sin(x)\cot x = \frac{\cos(x)}{\sin(x)}.\newlineSo, 2(tanxcotx)=2(sin(x)cos(x)cos(x)sin(x))2(\tan x - \cot x) = 2\left(\frac{\sin(x)}{\cos(x)} - \frac{\cos(x)}{\sin(x)}\right).
  7. Rewrite Numerator: Find a common denominator for the terms in the numerator.\newline2(sin(x)cos(x)cos(x)sin(x))=2(sin2(x)cos2(x))sin(x)cos(x)2\left(\frac{\sin(x)}{\cos(x)} - \frac{\cos(x)}{\sin(x)}\right) = \frac{2(\sin^2(x) - \cos^2(x))}{\sin(x)\cos(x)}.
  8. Combine Numerator and Denominator: Combine the numerator and denominator.\newline(2(sin2(x)cos2(x))/(sin(x)cos(x)))/((sin2(x)cos2(x))/(sin2(x)cos2(x)))(2(\sin^2(x) - \cos^2(x)) / (\sin(x)\cos(x))) / ((\sin^2(x) - \cos^2(x)) / (\sin^2(x)\cos^2(x))).
  9. Simplify Complex Fraction: Simplify the complex fraction.\newlineThe (sin2(x)cos2(x))(\sin^2(x) - \cos^2(x)) terms cancel out, leaving us with:\newline2(sin(x)cos(x))/1(sin2(x)cos2(x))=2sin(x)cos(x)\frac{2}{(\sin(x)\cos(x))} / \frac{1}{(\sin^2(x)\cos^2(x))} = 2\sin(x)\cos(x).
  10. Recognize Double-Angle Identity: Recognize that 2sin(x)cos(x)2\sin(x)\cos(x) is the double-angle identity for sine.\newline2sin(x)cos(x)=sin(2x)2\sin(x)\cos(x) = \sin(2x).
  11. Conclude Proof: Conclude that the left-hand side is equal to the right-hand side.\newlineTherefore, (2(tanxcotx))/(tan2(x)cot2(x))=sin(2x)(2(\tan x - \cot x)) / (\tan^2(x) - \cot^2(x)) = \sin(2x), proving the identity.

More problems from Multiplication with rational exponents