Q. 83. Prove the identity.tan2x−cot2x2(tanx−cotx)=sin2x
Start Problem: Start with the left-hand side of the identity.We have the expression tan2(x)−cot2(x)2(tanx−cotx).
Recall Identities: Recall the Pythagorean identity for tangent and cotangent. tan2(x)+1=sec2(x) and cot2(x)+1=csc2(x).We can rewrite the denominator of the left-hand side using these identities.tan2(x)−cot2(x)=(sec2(x)−1)−(csc2(x)−1).
Rewrite Denominator: Simplify the denominator. (sec2(x)−1)−(csc2(x)−1)=sec2(x)−csc2(x).
Simplify Denominator: Use the reciprocal identities for sec(x) and csc(x).sec(x)=cos(x)1 and csc(x)=sin(x)1.So, sec2(x)−csc2(x)=(cos2(x)1)−(sin2(x)1).
Use Reciprocal Identities: Find a common denominator for the terms in the denominator.(cos2(x)1)−(sin2(x)1)=sin2(x)cos2(x)sin2(x)−cos2(x).
Find Common Denominator: Recall the double-angle identity for sine. sin(2x)=2sin(x)cos(x).We can rewrite the numerator of the left-hand side using the tangent and cotangent definitions.tanx=cos(x)sin(x) and cotx=sin(x)cos(x).So, 2(tanx−cotx)=2(cos(x)sin(x)−sin(x)cos(x)).
Rewrite Numerator: Find a common denominator for the terms in the numerator.2(cos(x)sin(x)−sin(x)cos(x))=sin(x)cos(x)2(sin2(x)−cos2(x)).
Combine Numerator and Denominator: Combine the numerator and denominator.(2(sin2(x)−cos2(x))/(sin(x)cos(x)))/((sin2(x)−cos2(x))/(sin2(x)cos2(x))).
Simplify Complex Fraction: Simplify the complex fraction.The (sin2(x)−cos2(x)) terms cancel out, leaving us with:(sin(x)cos(x))2/(sin2(x)cos2(x))1=2sin(x)cos(x).
Recognize Double-Angle Identity: Recognize that 2sin(x)cos(x) is the double-angle identity for sine.2sin(x)cos(x)=sin(2x).
Conclude Proof: Conclude that the left-hand side is equal to the right-hand side.Therefore, (2(tanx−cotx))/(tan2(x)−cot2(x))=sin(2x), proving the identity.
More problems from Multiplication with rational exponents