Express tan and sec: Let's start by expressing tanA and secA in terms of sinA and cosA, since tanA=cosAsinA and secA=cosA1.
Rewrite using sin and cos: Rewrite the given expression using sin A and cos A: secA−1tanA−secA+11+tanA=1/cosA−1sinA/cosA−1/cosA+11+sinA/cosA.
Simplify fractions: Simplify the denominators of both fractions by multiplying by cosA:(cosAsinA)/(cosA1−1) becomes (cosAsinA)∗(1−cosAcosA), and (1+cosAsinA)/(cosA1+1) becomes (1+cosAsinA)∗(1+cosAcosA).
Combine and subtract: Now, simplify the expressions:(cosAsinA)⋅(1−cosAcosA)=1−cosAsinA,and (1+cosAsinA)⋅(1+cosAcosA)=1+cosAcosA+sinA.
Find common denominator: Subtract the second expression from the first:(1−cosAsinA)−(1+cosAcosA+sinA).
Expand numerator: Find a common denominator to combine the fractions: [(sinA)(1+cosA)−(cosA+sinA)(1−cosA)]/((1−cosA)(1+cosA)).
Simplify numerator: Expand the numerator: (sinA+sinAcosA−cosA−sinA+sinAcosA−sinA2)/((1−cosA)(1+cosA)).
Replace with identity: Simplify the numerator by combining like terms: (sinAcosA+sinAcosA−cosA−sinA2)/((1−cosA)(1+cosA)).
Simplify denominator: Notice that sinAcosA+sinAcosA is 2sinAcosA, and sin2A+cos2A=1: (2sinAcosA−cosA−(1−cos2A))/((1−cosA)(1+cosA)).
Divide by sin2A: Replace 1−cos2A with sin2A, which is an identity:(2sinAcosA−cosA−sin2A)/((1−cosA)(1+cosA)).
Final simplification: Now, simplify the denominator using the difference of squares identity: egin{equation}\frac{2\sin A \cos A - \cos A - \sin^2 A}{1 - \cos^2 A}.\end{equation}
Final simplification: Now, simplify the denominator using the difference of squares identity: (2sinAcosA−cosA−sin2A)/(1−cos2A).Replace 1−cos2A with sin2A in the denominator:(2sinAcosA−cosA−sin2A)/sin2A.
Final simplification: Now, simplify the denominator using the difference of squares identity: (2sinAcosA−cosA−sin2A)/(1−cos2A).Replace 1−cos2A with sin2A in the denominator: (2sinAcosA−cosA−sin2A)/sin2A.Divide each term in the numerator by sin2A: (2cosA/sinA)−(1/sinA)−(sin2A/sin2A).
Final simplification: Now, simplify the denominator using the difference of squares identity: (2sinAcosA−cosA−sin2A)/(1−cos2A).Replace 1−cos2A with sin2A in the denominator: (2sinAcosA−cosA−sin2A)/sin2A.Divide each term in the numerator by sin2A: (2cosA/sinA)−(1/sinA)−(sin2A/sin2A).Simplify the terms: (2cotA)−(cscA)−1.
Final simplification: Now, simplify the denominator using the difference of squares identity:(2sinAcosA−cosA−sin2A)/(1−cos2A).Replace 1−cos2A with sin2A in the denominator:(2sinAcosA−cosA−sin2A)/sin2A.Divide each term in the numerator by sin2A:(2cosA/sinA)−(1/sinA)−(sin2A/sin2A).Simplify the terms:(2cotA)−(cscA)−1.We have made a mistake in the previous step. The term (sin2A/sin2A) should simplify to 1, not −1. Let's correct this:(2cotA)−(cscA)−1 becomes 1−cos2A1.