Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Prove that 
(Tan A)/(sec A-1)-(1+Tan A)/(sec A+1)=2cosec theta

Prove that TanAsecA11+TanAsecA+1=2cosecθ \frac{\operatorname{Tan} A}{\sec A-1}-\frac{1+\operatorname{Tan} A}{\sec A+1}=2 \operatorname{cosec} \theta

Full solution

Q. Prove that TanAsecA11+TanAsecA+1=2cosecθ \frac{\operatorname{Tan} A}{\sec A-1}-\frac{1+\operatorname{Tan} A}{\sec A+1}=2 \operatorname{cosec} \theta
  1. Express tan and sec: Let's start by expressing tanA\tan A and secA\sec A in terms of sinA\sin A and cosA\cos A, since tanA=sinAcosA\tan A = \frac{\sin A}{\cos A} and secA=1cosA\sec A = \frac{1}{\cos A}.
  2. Rewrite using sin and cos: Rewrite the given expression using sin AA and cos AA: tanAsecA11+tanAsecA+1=sinA/cosA1/cosA11+sinA/cosA1/cosA+1\frac{\tan A}{\sec A-1}-\frac{1+\tan A}{\sec A+1} = \frac{\sin A / \cos A}{1/\cos A - 1} - \frac{1 + \sin A / \cos A}{1/\cos A + 1}.
  3. Simplify fractions: Simplify the denominators of both fractions by multiplying by cosA\cos A:(sinAcosA)/(1cosA1)\left(\frac{\sin A}{\cos A}\right) / \left(\frac{1}{\cos A} - 1\right) becomes (sinAcosA)(cosA1cosA)\left(\frac{\sin A}{\cos A}\right) * \left(\frac{\cos A}{1 - \cos A}\right), and (1+sinAcosA)/(1cosA+1)\left(1 + \frac{\sin A}{\cos A}\right) / \left(\frac{1}{\cos A} + 1\right) becomes (1+sinAcosA)(cosA1+cosA)\left(1 + \frac{\sin A}{\cos A}\right) * \left(\frac{\cos A}{1 + \cos A}\right).
  4. Combine and subtract: Now, simplify the expressions:\newline(sinAcosA)(cosA1cosA)=sinA1cosA(\frac{\sin A}{\cos A}) \cdot (\frac{\cos A}{1 - \cos A}) = \frac{\sin A}{1 - \cos A},\newlineand (1+sinAcosA)(cosA1+cosA)=cosA+sinA1+cosA(1 + \frac{\sin A}{\cos A}) \cdot (\frac{\cos A}{1 + \cos A}) = \frac{\cos A + \sin A}{1 + \cos A}.
  5. Find common denominator: Subtract the second expression from the first:\newline(sinA1cosA)(cosA+sinA1+cosA)(\frac{\sin A}{1 - \cos A}) - (\frac{\cos A + \sin A}{1 + \cos A}).
  6. Expand numerator: Find a common denominator to combine the fractions: [(sinA)(1+cosA)(cosA+sinA)(1cosA)]/((1cosA)(1+cosA))[(\sin A)(1 + \cos A) - (\cos A + \sin A)(1 - \cos A)] / ((1 - \cos A)(1 + \cos A)).
  7. Simplify numerator: Expand the numerator: (sinA+sinAcosAcosAsinA+sinAcosAsinA2)/((1cosA)(1+cosA))(\sin A + \sin A \cos A - \cos A - \sin A + \sin A \cos A - \sin A^2) / ((1 - \cos A)(1 + \cos A)).
  8. Replace with identity: Simplify the numerator by combining like terms: (sinAcosA+sinAcosAcosAsinA2)/((1cosA)(1+cosA))(\sin A \cos A + \sin A \cos A - \cos A - \sin A^2) / ((1 - \cos A)(1 + \cos A)).
  9. Simplify denominator: Notice that sinAcosA+sinAcosA\sin A \cos A + \sin A \cos A is 2sinAcosA2\sin A \cos A, and sin2A+cos2A=1\sin^2 A + \cos^2 A = 1: (2sinAcosAcosA(1cos2A))/((1cosA)(1+cosA)).(2\sin A \cos A - \cos A - (1 - \cos^2 A)) / ((1 - \cos A)(1 + \cos A)).
  10. Divide by sin2A\sin^2 A: Replace 1cos2A1 - \cos^2 A with sin2A\sin^2 A, which is an identity:\newline(2sinAcosAcosAsin2A)/((1cosA)(1+cosA))(2\sin A \cos A - \cos A - \sin^2 A) / ((1 - \cos A)(1 + \cos A)).
  11. Final simplification: Now, simplify the denominator using the difference of squares identity: \newlineegin{equation}\newline\frac{22\sin A \cos A - \cos A - \sin^22 A}{11 - \cos^22 A}.\newline\end{equation}
  12. Final simplification: Now, simplify the denominator using the difference of squares identity: \newline(2sinAcosAcosAsin2A)/(1cos2A)(2\sin A \cos A - \cos A - \sin^2 A) / (1 - \cos^2 A).Replace 1cos2A1 - \cos^2 A with sin2A\sin^2 A in the denominator:\newline(2sinAcosAcosAsin2A)/sin2A(2\sin A \cos A - \cos A - \sin^2 A) / \sin^2 A.
  13. Final simplification: Now, simplify the denominator using the difference of squares identity: \newline(2sinAcosAcosAsin2A)/(1cos2A)(2\sin A \cos A - \cos A - \sin^2 A) / (1 - \cos^2 A).Replace 1cos2A1 - \cos^2 A with sin2A\sin^2 A in the denominator: \newline(2sinAcosAcosAsin2A)/sin2A(2\sin A \cos A - \cos A - \sin^2 A) / \sin^2 A.Divide each term in the numerator by sin2A\sin^2 A: \newline(2cosA/sinA)(1/sinA)(sin2A/sin2A)(2\cos A/\sin A) - (1/\sin A) - (\sin^2 A/\sin^2 A).
  14. Final simplification: Now, simplify the denominator using the difference of squares identity: \newline(2sinAcosAcosAsin2A)/(1cos2A)(2\sin A \cos A - \cos A - \sin^2 A) / (1 - \cos^2 A).Replace 1cos2A1 - \cos^2 A with sin2A\sin^2 A in the denominator: \newline(2sinAcosAcosAsin2A)/sin2A(2\sin A \cos A - \cos A - \sin^2 A) / \sin^2 A.Divide each term in the numerator by sin2A\sin^2 A: \newline(2cosA/sinA)(1/sinA)(sin2A/sin2A)(2\cos A/\sin A) - (1/\sin A) - (\sin^2 A/\sin^2 A).Simplify the terms: \newline(2cotA)(cscA)1(2\cot A) - (\csc A) - 1.
  15. Final simplification: Now, simplify the denominator using the difference of squares identity:\newline(2sinAcosAcosAsin2A)/(1cos2A)(2\sin A \cos A - \cos A - \sin^2 A) / (1 - \cos^2 A).Replace 1cos2A1 - \cos^2 A with sin2A\sin^2 A in the denominator:\newline(2sinAcosAcosAsin2A)/sin2A(2\sin A \cos A - \cos A - \sin^2 A) / \sin^2 A.Divide each term in the numerator by sin2A\sin^2 A:\newline(2cosA/sinA)(1/sinA)(sin2A/sin2A)(2\cos A/\sin A) - (1/\sin A) - (\sin^2 A/\sin^2 A).Simplify the terms:\newline(2cotA)(cscA)1(2\cot A) - (\csc A) - 1.We have made a mistake in the previous step. The term (sin2A/sin2A)(\sin^2 A/\sin^2 A) should simplify to 11, not 1-1. Let's correct this:\newline(2cotA)(cscA)1(2\cot A) - (\csc A) - 1 becomes 1cos2A1 - \cos^2 A11.

More problems from Evaluate functions