Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine the convergence or divergence of the series.

1+(1)/(root(3)(4))+(1)/(root(3)(9))+(1)/(root(3)(16))+(1)/(root(3)(25))+dots

Determine the convergence or divergence of the series.\newline1+143+193+1163+1253+1+\frac{1}{\sqrt[3]{4}}+\frac{1}{\sqrt[3]{9}}+\frac{1}{\sqrt[3]{16}}+\frac{1}{\sqrt[3]{25}}+\dots

Full solution

Q. Determine the convergence or divergence of the series.\newline1+143+193+1163+1253+1+\frac{1}{\sqrt[3]{4}}+\frac{1}{\sqrt[3]{9}}+\frac{1}{\sqrt[3]{16}}+\frac{1}{\sqrt[3]{25}}+\dots
  1. Identify series type: Step 11: Identify the series type.\newlineWe're dealing with the series 1+1/43+1/93+1/163+1/253+1 + 1/\sqrt[3]{4} + 1/\sqrt[3]{9} + 1/\sqrt[3]{16} + 1/\sqrt[3]{25} + \ldots\newlineThis looks like a p-series where each term is of the form 1/n231/\sqrt[3]{n^2}.
  2. Compare with convergent series: Step 22: Compare to a known convergent series.\newlineFor p-series, 1np\sum \frac{1}{n^p} converges if p > 1. Here, p=23p = \frac{2}{3} (since the cube root of n2n^2 is n23n^{\frac{2}{3}}).

More problems from Multiplication with rational exponents