Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Perform the following operation and express in simplest form.

(x^(2)+3x-54)/(x^(3)+4x^(2))÷(x^(2)-81)/(x^(3)-9x^(2))
Answer:

Perform the following operation and express in simplest form.\newlinex2+3x54x3+4x2÷x281x39x2 \frac{x^{2}+3 x-54}{x^{3}+4 x^{2}} \div \frac{x^{2}-81}{x^{3}-9 x^{2}} \newlineAnswer:

Full solution

Q. Perform the following operation and express in simplest form.\newlinex2+3x54x3+4x2÷x281x39x2 \frac{x^{2}+3 x-54}{x^{3}+4 x^{2}} \div \frac{x^{2}-81}{x^{3}-9 x^{2}} \newlineAnswer:
  1. Rewrite Division as Multiplication: Rewrite the division as multiplication by the reciprocal.\newlineTo divide by a fraction, you multiply by its reciprocal. The reciprocal of (x281)/(x39x2)(x^{2}-81)/(x^{3}-9x^{2}) is (x39x2)/(x281)(x^{3}-9x^{2})/(x^{2}-81).
  2. Set Up with Reciprocal: Set up the expression with the reciprocal.\newlineThe original expression (x2+3x54)/(x3+4x2)÷(x281)/(x39x2)(x^{2}+3x-54)/(x^{3}+4x^{2}) \div (x^{2}-81)/(x^{3}-9x^{2}) becomes (x2+3x54)/(x3+4x2)×(x39x2)/(x281)(x^{2}+3x-54)/(x^{3}+4x^{2}) \times (x^{3}-9x^{2})/(x^{2}-81).
  3. Factor Numerator and Denominator: Factor where possible.\newlineFactor the numerator and denominator of each fraction.\newline(x2+3x54)(x^{2}+3x-54) factors to (x+9)(x6)(x+9)(x-6).\newline(x3+4x2)(x^{3}+4x^{2}) factors to x2(x+4)x^{2}(x+4).\newline(x281)(x^{2}-81) factors to (x+9)(x9)(x+9)(x-9).\newline(x39x2)(x^{3}-9x^{2}) factors to x2(x9)x^{2}(x-9).
  4. Write Expression with Factors: Write the expression with the factors.\newlineThe expression now looks like this: (x+9)(x6)x2(x+4)×x2(x9)(x+9)(x9)\frac{(x+9)(x-6)}{x^{2}(x+4)} \times \frac{x^{2}(x-9)}{(x+9)(x-9)}.
  5. Cancel Common Factors: Cancel out common factors. Cancel (x+9)(x+9) and x2x^{2} from the numerator and denominator. The expression simplifies to (x6)(x+4)×(x9)(x9)\frac{(x-6)}{(x+4)} \times \frac{(x-9)}{(x-9)}.
  6. Simplify Remaining Expression: Simplify the remaining expression.\newlineAfter canceling out (x9)(x-9), we are left with x6x+4\frac{x-6}{x+4}.

More problems from Multiplication with rational exponents