Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply. Write your answer in simplest form. \newline2(53)-\sqrt{2}(-5 - \sqrt{3})

Full solution

Q. Multiply. Write your answer in simplest form. \newline2(53)-\sqrt{2}(-5 - \sqrt{3})
  1. Distribute 2-\sqrt{2}: Distribute 2-\sqrt{2} to both terms inside the parentheses.-\sqrt{\(2\)}(\(-5 - \sqrt{33}) = -\sqrt{22} \times (5-5) - \sqrt{22} \times (-\sqrt{33})
  2. Multiply 2-\sqrt{2} by 5-5: Multiply 2-\sqrt{2} by 5-5.\newline2×(5)=52-\sqrt{2} \times (-5) = 5\sqrt{2}
  3. Multiply 2-\sqrt{2} by 3-\sqrt{3}: Multiply 2-\sqrt{2} by 3-\sqrt{3}.
    2×(3)=2×3-\sqrt{2} \times (-\sqrt{3}) = \sqrt{2} \times \sqrt{3}
    Apply the product rule of radicals.
    2×3=2×3=6\sqrt{2} \times \sqrt{3} = \sqrt{2 \times 3} = \sqrt{6}
  4. Combine results: Combine the results from Step 22 and Step 33. 52+65\sqrt{2} + \sqrt{6}

More problems from Simplify radical expressions using the distributive property