Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply. Write your answer in simplest form. \newline2(5+5)\sqrt{2}(-5 + \sqrt{5})

Full solution

Q. Multiply. Write your answer in simplest form. \newline2(5+5)\sqrt{2}(-5 + \sqrt{5})
  1. Distribute 2\sqrt{2}: Distribute 2\sqrt{2} to both terms inside the parentheses.\newline2(5+5)\sqrt{2}(-5 + \sqrt{5})\newline= 2(5)+2(5)\sqrt{2}\cdot(-5) + \sqrt{2}\cdot(\sqrt{5})
  2. Simple Multiplication: We have: \newline2×(5)\sqrt{2} \times (-5)\newlineThis is a simple multiplication of a radical with a real number.\newline2×(5)\sqrt{2} \times (-5) \newline= 5×2-5 \times \sqrt{2}
  3. Multiply Radicals: Now, we multiply the radicals:\newline2×5\sqrt{2} \times \sqrt{5}\newlineApply the product rule of radicals.\newline2×5=2×5=10\sqrt{2} \times \sqrt{5} = \sqrt{2 \times 5} = \sqrt{10}
  4. Combine Results: Combine the results from the previous steps to get the final answer. \newline5×2+10-5 \times \sqrt{2} + \sqrt{10}\newlineThis is the simplest form, as no further simplification is possible.

More problems from Simplify radical expressions using the distributive property