Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply. Write your answer in simplest form. \newline2(55)-\sqrt{2}(-5 - \sqrt{5})

Full solution

Q. Multiply. Write your answer in simplest form. \newline2(55)-\sqrt{2}(-5 - \sqrt{5})
  1. Distribute 2-\sqrt{2}: Distribute 2-\sqrt{2} to both terms inside the parentheses.-\sqrt{\(2\)}(\(-5 - \sqrt{55}) = -\sqrt{22} \cdot (5-5) - \sqrt{22} \cdot (-\sqrt{55})
  2. Multiply 2-\sqrt{2} by 5-5: Multiply 2-\sqrt{2} by 5-5.\newline2×(5)-\sqrt{2} \times (-5)\newline=2×5= \sqrt{2} \times 5\newline=52= 5\sqrt{2}
  3. Multiply 2-\sqrt{2} by 5-\sqrt{5}: Multiply 2-\sqrt{2} by 5-\sqrt{5}.\newline2×(5)-\sqrt{2} \times (-\sqrt{5})\newline=2×5= \sqrt{2} \times \sqrt{5}\newline=2×5= \sqrt{2 \times 5}\newline=10= \sqrt{10}
  4. Combine results: Combine the results from Step 22 and Step 33. 52+105\sqrt{2} + \sqrt{10}

More problems from Simplify radical expressions using the distributive property