Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply. Write your answer in simplest form.\newlines33s1×3s1s23s\frac{s - 3}{3s - 1} \times \frac{3s - 1}{s^2 - 3s}

Full solution

Q. Multiply. Write your answer in simplest form.\newlines33s1×3s1s23s\frac{s - 3}{3s - 1} \times \frac{3s - 1}{s^2 - 3s}
  1. Identify expressions to multiply: Identify the expressions to be multiplied.\newlineWe have (s3)/(3s1)×(3s1)/(s23s)(s - 3)/(3s - 1) \times (3s - 1)/(s^2 - 3s). We will multiply these two fractions.
  2. Multiply numerators and denominators: Multiply the numerators and the denominators.\newlineWhen multiplying fractions, we multiply the numerators together and the denominators together.\newline(s3)/(3s1)×(3s1)/(s23s)=((s3)×(3s1))/((3s1)×(s23s))(s - 3)/(3s - 1) \times (3s - 1)/(s^2 - 3s) = ((s - 3) \times (3s - 1)) / ((3s - 1) \times (s^2 - 3s))
  3. Factor denominator of second fraction: Factor the denominator of the second fraction.\newlineThe denominator s23ss^2 - 3s can be factored by taking out the common factor ss.\newlines23s=s(s3)s^2 - 3s = s(s - 3)
  4. Rewrite with factored denominator: Rewrite the expression with the factored denominator. (s3)/(3s1)×(3s1)/(s23s)(s - 3)/(3s - 1) \times (3s - 1)/(s^2 - 3s) becomes (s3)/(3s1)×(3s1)/(s(s3))(s - 3)/(3s - 1) \times (3s - 1)/(s(s - 3))
  5. Cancel common factors: Cancel out common factors.\newlineWe can cancel out (s3)(s - 3) and (3s1)(3s - 1) from the numerator and denominator.\newlines33s1×3s1s(s3)=1s\frac{s - 3}{3s - 1} \times \frac{3s - 1}{s(s - 3)} = \frac{1}{s}

More problems from Multiply and divide rational expressions