Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply. Write your answer in simplest form.\newline2q+3q2×(10q213q+4)\frac{2q + 3}{q^2} \times (10q^2 - 13q + 4)

Full solution

Q. Multiply. Write your answer in simplest form.\newline2q+3q2×(10q213q+4)\frac{2q + 3}{q^2} \times (10q^2 - 13q + 4)
  1. Identify expressions: Identify the expressions to be multiplied.\newlineWe have the expression (2q+3)/q2(2q + 3)/q^2 to be multiplied by (10q213q+4)(10q^2 - 13q + 4).
  2. Multiply expressions: Multiply the expressions.\newlineTo multiply the expressions, we multiply the numerators together and place the result over the common denominator.\newlineThe expression becomes: (2q+3)(10q213q+4)q2.\frac{(2q + 3) \cdot (10q^2 - 13q + 4)}{q^2}.
  3. Distribute terms: Distribute the terms in the numerators.\newlineWe distribute (2q+3)(2q + 3) across (10q213q+4)(10q^2 - 13q + 4) to get:\newline2q×10q2+2q×(13q)+2q×4+3×10q2+3×(13q)+3×42q \times 10q^2 + 2q \times (-13q) + 2q \times 4 + 3 \times 10q^2 + 3 \times (-13q) + 3 \times 4.
  4. Perform multiplication: Perform the multiplication.\newlineNow we calculate each term:\newline2q×10q2=20q32q \times 10q^2 = 20q^3\newline2q×(13q)=26q22q \times (-13q) = -26q^2\newline2q×4=8q2q \times 4 = 8q\newline3×10q2=30q23 \times 10q^2 = 30q^2\newline3×(13q)=39q3 \times (-13q) = -39q\newline3×4=123 \times 4 = 12\newlineSo the expression becomes: (20q326q2+8q+30q239q+12)/q2(20q^3 - 26q^2 + 8q + 30q^2 - 39q + 12)/q^2.
  5. Combine like terms: Combine like terms in the numerator.\newlineWe combine the q2q^2 terms and the qq terms:\newline20q3+(26q2+30q2)+(8q39q)+1220q^3 + (-26q^2 + 30q^2) + (8q - 39q) + 12\newlineThis simplifies to: 20q3+4q231q+1220q^3 + 4q^2 - 31q + 12.\newlineSo the expression is now: (20q3+4q231q+12)/q2(20q^3 + 4q^2 - 31q + 12)/q^2.
  6. Simplify expression: Simplify the expression by canceling out common factors.\newlineWe notice that each term in the numerator has at least a factor of q2q^2. However, since the highest power of qq in the numerator is q3q^3, we cannot cancel out the entire q2q^2 from the denominator across all terms. We can only simplify the terms that have q2q^2 as a factor.\newlineThe expression becomes: 20q31+12q220q - 31 + \frac{12}{q^2}.

More problems from Multiply and divide rational expressions