Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve: 

lim_(x rarr-1)(x^(4)+2x^(3)+x^(2))/(x+1)=

Solve: limx1(x4+2x3+x2x+1)=\lim_{x \rightarrow -1}\left(\frac{x^{4}+2x^{3}+x^{2}}{x+1}\right)=

Full solution

Q. Solve: limx1(x4+2x3+x2x+1)=\lim_{x \rightarrow -1}\left(\frac{x^{4}+2x^{3}+x^{2}}{x+1}\right)=
  1. Factorize Numerator: Step Title: Factorize the Numerator\newlineConcise Step Description: Factorize the polynomial in the numerator.\newlineStep Calculation: x2(x2+2x+1)=x2(x+1)2x^2(x^2 + 2x + 1) = x^2(x + 1)^2\newlineStep Output: x2(x+1)2x^2(x + 1)^2
  2. Simplify Expression: Step Title: Simplify the Expression\newlineConcise Step Description: Cancel out the common factor in the numerator and the denominator.\newlineStep Calculation: (x2(x+1)2)/(x+1)=x2(x+1)(x^2(x + 1)^2) / (x + 1) = x^2(x + 1)\newlineStep Output: x2(x+1)x^2(x + 1)
  3. Substitute Limit Value: Step Title: Substitute the Limit Value\newlineConcise Step Description: Substitute x=1x = -1 into the simplified expression.\newlineStep Calculation: (1)2(1+1)=1×0=0(-1)^2(-1 + 1) = 1 \times 0 = 0\newlineStep Output: 00