Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

log_(11)((x)/(sqrtx))+log_(11)(sqrt(x^(5)))-(7)/(3)log_(11)x

log11(xx)+log11(x5)73log11x \log _{11}\left(\frac{x}{\sqrt{x}}\right)+\log _{11}\left(\sqrt{x^{5}}\right)-\frac{7}{3} \log _{11} x

Full solution

Q. log11(xx)+log11(x5)73log11x \log _{11}\left(\frac{x}{\sqrt{x}}\right)+\log _{11}\left(\sqrt{x^{5}}\right)-\frac{7}{3} \log _{11} x
  1. Simplify logarithm expression: First, simplify log11(xx)\log_{11}\left(\frac{x}{\sqrt{x}}\right). Using the quotient rule of logarithms, logb(ac)=logb(a)logb(c)\log_b\left(\frac{a}{c}\right) = \log_b(a) - \log_b(c), we get: log11(x)log11(x)\log_{11}(x) - \log_{11}(\sqrt{x}). Since x=x1/2\sqrt{x} = x^{1/2}, rewrite the expression: log11(x)log11(x1/2)\log_{11}(x) - \log_{11}(x^{1/2}). Using the power rule, logb(ac)=clogb(a)\log_b(a^c) = c\cdot\log_b(a), we have: log11(x)(12)log11(x)\log_{11}(x) - \left(\frac{1}{2}\right)\cdot\log_{11}(x). Simplify further: (112)log11(x)=(12)log11(x)\left(1 - \frac{1}{2}\right) \cdot \log_{11}(x) = \left(\frac{1}{2}\right) \cdot \log_{11}(x).
  2. Rewrite and simplify: Next, simplify log11(x5)\log_{11}(\sqrt{x^{5}}). Rewrite x5\sqrt{x^{5}} as (x5)12=x52(x^{5})^{\frac{1}{2}} = x^{\frac{5}{2}}. Using the power rule: log11(x52)=52log11(x)\log_{11}(x^{\frac{5}{2}}) = \frac{5}{2} \cdot \log_{11}(x).
  3. Combine results and simplify: Combine the results from the previous steps:\newline(12)log11(x)+(52)log11(x)(73)log11(x)(\frac{1}{2}) \cdot \log_{11}(x) + (\frac{5}{2}) \cdot \log_{11}(x) - (\frac{7}{3}) \cdot \log_{11}(x).\newlineCombine like terms:\newline(12+5273)log11(x)(\frac{1}{2} + \frac{5}{2} - \frac{7}{3}) \cdot \log_{11}(x).\newlineConvert fractions to a common denominator and simplify:\newline(36+156146)log11(x)=(46)log11(x)(\frac{3}{6} + \frac{15}{6} - \frac{14}{6}) \cdot \log_{11}(x) = (\frac{4}{6}) \cdot \log_{11}(x).\newlineSimplify the fraction:\newline(23)log11(x)(\frac{2}{3}) \cdot \log_{11}(x).

More problems from Multiplication with rational exponents