Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

ln(2b2c3)\ln\left(\frac{2b^{-2}}{c^{3}}\right)

Full solution

Q. ln(2b2c3)\ln\left(\frac{2b^{-2}}{c^{3}}\right)
  1. Break down using properties: Apply the logarithm properties to break down the expression.\newlineThe natural logarithm of a quotient is equal to the difference of the natural logarithms of the numerator and the denominator.\newlineln(2b2c3)=ln(2b2)ln(c3)\ln\left(\frac{2b^{-2}}{c^{3}}\right) = \ln(2b^{-2}) - \ln(c^{3})
  2. Separate constants and variables: Apply the logarithm properties to separate the constants and variables in the numerator.\newlineThe natural logarithm of a product is equal to the sum of the natural logarithms of the factors.\newlineln(2b2)=ln(2)+ln(b2)\ln(2\cdot b^{-2}) = \ln(2) + \ln(b^{-2})
  3. Apply power rule: Apply the power rule for logarithms to the terms with exponents.\newlineThe natural logarithm of a number raised to a power is equal to the power times the natural logarithm of the number.\newlineln(b2)=2ln(b)\ln(b^{-2}) = -2\cdot\ln(b)\newlineln(c3)=3ln(c)\ln(c^{3}) = 3\cdot\ln(c)
  4. Substitute and simplify: Substitute the results from Step 33 into the expression from Step 11.\newlineln(2b2c3)=ln(2)+(2ln(b))(3ln(c))\ln\left(\frac{2b^{-2}}{c^{3}}\right) = \ln(2) + (-2\ln(b)) - (3\ln(c))
  5. Substitute and simplify: Substitute the results from Step 33 into the expression from Step 11.\newlineln(2b2c3)=ln(2)+(2ln(b))(3ln(c))\ln\left(\frac{2b^{-2}}{c^{3}}\right) = \ln(2) + (-2\ln(b)) - (3\ln(c)) Simplify the expression by combining like terms.\newlineln(2b2c3)=ln(2)2ln(b)3ln(c)\ln\left(\frac{2b^{-2}}{c^{3}}\right) = \ln(2) - 2\ln(b) - 3\ln(c)

More problems from Multiplication with rational exponents