Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr2)(x^(4)+3x^(3)-10x^(2))/(x^(2)-2x)=

limx2x4+3x310x2x22x= \lim _{x \rightarrow 2} \frac{x^{4}+3 x^{3}-10 x^{2}}{x^{2}-2 x}=

Full solution

Q. limx2x4+3x310x2x22x= \lim _{x \rightarrow 2} \frac{x^{4}+3 x^{3}-10 x^{2}}{x^{2}-2 x}=
  1. Identify Function & Point: Identify the function and the point at which we need to find the limit.\newlineWe are given the function (x4+3x310x2)/(x22x)(x^4 + 3x^3 - 10x^2) / (x^2 - 2x) and we need to find the limit as xx approaches 22.
  2. Direct Substitution: Try direct substitution of x=2x = 2 into the function to see if the limit can be found this way.\newlineSubstitute x=2x = 2 into the function:\newline((2)4+3(2)310(2)2)/((2)22(2))((2)^4 + 3(2)^3 - 10(2)^2) / ((2)^2 - 2(2))\newline=(16+2440)/(44)= (16 + 24 - 40) / (4 - 4)\newline=0/0= 0 / 0\newlineWe get an indeterminate form 0/00/0, which means we cannot find the limit by direct substitution.
  3. Factor Numerator & Denominator: Factor the numerator and denominator to simplify the expression.\newlineFactor x2x^2 out of the numerator and xx out of the denominator:\newlinex2(x2+3x10)x(x2)\frac{x^2(x^2 + 3x - 10)}{x(x - 2)}\newlineNow, factor the quadratic x2+3x10x^2 + 3x - 10:\newlinex2(x+5)(x2)x(x2)\frac{x^2(x + 5)(x - 2)}{x(x - 2)}
  4. Cancel Common Factors: Cancel out the common factors in the numerator and the denominator.\newlineCancel the common factor (x2)(x - 2):\newlinex2(x+5)x\frac{x^2(x + 5)}{x}
  5. Simplify Expression: Simplify the expression further by canceling out any more common factors.\newlineCancel the common factor xx:\newline(x(x+5))(x(x + 5))
  6. Try Direct Substitution Again: Now that the expression is simplified, try direct substitution again.\newlineSubstitute x=2x = 2 into the simplified function:\newline(2(2+5))(2(2 + 5))\newline= (2×7)(2 \times 7)\newline= 1414