Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr2)(x-2)/(1-sqrt(3x-5))=

limx2x213x5= \lim _{x \rightarrow 2} \frac{x-2}{1-\sqrt{3 x-5}}=

Full solution

Q. limx2x213x5= \lim _{x \rightarrow 2} \frac{x-2}{1-\sqrt{3 x-5}}=
  1. Identify Limit Form: Identify the form of the limit.\newlineWe need to determine the form of the limit as xx approaches 22. To do this, we substitute xx with 22 in the expression (x2)/(13x5)(x-2)/(1-\sqrt{3x-5}).\newlinelimx2x213x5=221325\lim_{x \to 2}\frac{x-2}{1-\sqrt{3x-5}} = \frac{2-2}{1-\sqrt{3\cdot2-5}}\newline=0165= \frac{0}{1-\sqrt{6-5}}\newline=011= \frac{0}{1-\sqrt{1}}\newline=00= \frac{0}{0}\newlineThis is an indeterminate form, which means we need to apply further techniques to evaluate the limit.
  2. Apply Conjugate Multiplication: Apply conjugate multiplication to simplify the expression.\newlineTo resolve the indeterminate form, we can multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of 13x51-\sqrt{3x-5} is 1+3x51+\sqrt{3x-5}.\newlinelimx2x213x51+3x51+3x5\lim_{x \to 2}\frac{x-2}{1-\sqrt{3x-5}} \cdot \frac{1+\sqrt{3x-5}}{1+\sqrt{3x-5}}
  3. Perform Multiplication: Perform the multiplication.\newlineNow we multiply the numerators and the denominators.\newlineNumerator: (x2)(1+3x5)(x-2)(1+\sqrt{3x-5})\newlineDenominator: (13x5)(1+3x5)(1-\sqrt{3x-5})(1+\sqrt{3x-5})\newlineThe denominator simplifies to 1(3x5)21 - (\sqrt{3x-5})^2 by the difference of squares formula.
  4. Simplify Denominator: Simplify the denominator.\newlineWe simplify the denominator using the difference of squares formula.\newlineDenominator: 1(3x5)2=1(3x5)=13x+5=63x1 - (\sqrt{3x-5})^2 = 1 - (3x-5) = 1 - 3x + 5 = 6 - 3x
  5. Simplify Numerator: Simplify the numerator.\newlineWe expand the numerator.\newlineNumerator: (x2)(1+3x5)=x+x3x5223x5(x-2)(1+\sqrt{3x-5}) = x + x\sqrt{3x-5} - 2 - 2\sqrt{3x-5}
  6. Combine Like Terms: Combine like terms in the numerator.\newlineCombining like terms, we get:\newlineNumerator: x2+x3x523x5x - 2 + x\sqrt{3x-5} - 2\sqrt{3x-5}\newlineThis simplifies to: (x2)+3x5(x2)(x - 2) + \sqrt{3x-5}(x - 2)
  7. Factor Out Common Term: Factor out (x2)(x - 2) from the numerator.\newlineWe factor (x2)(x - 2) out of the numerator to get:\newlineNumerator: (x2)(1+3x5)(x - 2)(1 + \sqrt{3x-5})
  8. Cancel Common Terms: Cancel out the common terms.\newlineWe now have a common term (x2)(x - 2) in both the numerator and the denominator that we can cancel out.\newlinelimx2(x2)(1+3x5)/(63x)\lim_{x \to 2}(x - 2)(1 + \sqrt{3x-5}) / (6 - 3x)\newline= limx2(1+3x5)/(63x)\lim_{x \to 2}(1 + \sqrt{3x-5}) / (6 - 3x)
  9. Substitute xx in Expression: Substitute xx with 22 in the simplified expression.\newlineNow that we have canceled the common terms, we can substitute xx with 22 in the expression to find the limit.\newlinelimx2(1+3x5)/(63x)\lim_{x \to 2}(1 + \sqrt{3x-5}) / (6 - 3x)\newline= (1+325)/(632)(1 + \sqrt{3*2-5}) / (6 - 3*2)\newline= (1+65)/(66)(1 + \sqrt{6-5}) / (6 - 6)\newline= (1+1)/0(1 + \sqrt{1}) / 0\newline= (1+1)/0(1 + 1) / 0\newline= xx00

More problems from Multiply using the distributive property