Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr2)(3-sqrt(5x-1))/(x-2)=

limx235x1x2= \lim _{x \rightarrow 2} \frac{3-\sqrt{5 x-1}}{x-2}=

Full solution

Q. limx235x1x2= \lim _{x \rightarrow 2} \frac{3-\sqrt{5 x-1}}{x-2}=
  1. Identify the form: Identify the form of the limit.\newlineSubstitute x=2x = 2 into the function to see if the limit can be directly calculated.\newlinelimx235x1x2=352122=390=330=00\lim_{x \to 2}\frac{3 - \sqrt{5x - 1}}{x - 2} = \frac{3 - \sqrt{5\cdot2 - 1}}{2 - 2} = \frac{3 - \sqrt{9}}{0} = \frac{3 - 3}{0} = \frac{0}{0}\newlineThis is an indeterminate form, so we cannot directly calculate the limit.
  2. Substitute and check: Apply L'Hôpital's Rule.\newlineSince we have an indeterminate form of 0/00/0, we can apply L'Hôpital's Rule, which states that if the limit as xx approaches aa of f(x)/g(x)f(x)/g(x) is 0/00/0 or /\infty/\infty, then the limit is the same as the limit of the derivatives of the numerator and the denominator.\newlineSo, we need to find the derivatives of the numerator and the denominator.
  3. Apply L'Hôpital's Rule: Differentiate the numerator and the denominator.\newlineThe derivative of the numerator 35x13 - \sqrt{5x - 1} with respect to xx is:\newlineddx[35x1]=ddx[3]ddx[5x1]=0(12)(5x1)125=525x1\frac{d}{dx}[3 - \sqrt{5x - 1}] = \frac{d}{dx}[3] - \frac{d}{dx}[\sqrt{5x - 1}] = 0 - (\frac{1}{2})(5x - 1)^{-\frac{1}{2}} \cdot 5 = -\frac{5}{2\sqrt{5x - 1}}\newlineThe derivative of the denominator x2x - 2 with respect to xx is:\newlineddx[x2]=1\frac{d}{dx}[x - 2] = 1
  4. Differentiate numerator and denominator: Apply L'Hôpital's Rule using the derivatives.\newlineNow we take the limit of the derivatives:\newlinelimx2(525x1)/(1)=52521\lim_{x \to 2}\left(\frac{-5}{2\sqrt{5x - 1}}\right) / (1) = \frac{-5}{2\sqrt{5\cdot 2 - 1}}
  5. Apply Rule with derivatives: Calculate the limit of the derivatives.\newlineSubstitute x=2x = 2 into the derivative of the numerator:\newlinelimx2(525x1)=52521=529=523=56\lim_{x \to 2}\left(-\frac{5}{2\sqrt{5x - 1}}\right) = -\frac{5}{2\sqrt{5\cdot2 - 1}} = -\frac{5}{2\sqrt{9}} = -\frac{5}{2\cdot3} = -\frac{5}{6}

More problems from Identify equivalent linear expressions I