Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

limx0(12x)1x\lim_{x \to 0}(1-2x)^{\frac{1}{x}}

Full solution

Q. limx0(12x)1x\lim_{x \to 0}(1-2x)^{\frac{1}{x}}
  1. Recognize Indeterminate Form: To solve the limit limx0(12x)1x\lim_{x \to 0}(1-2x)^{\frac{1}{x}}, we can recognize that this is an indeterminate form of type 000^0. To resolve this, we can use the property that elimx0(f(x)ln(g(x)))=limx0(g(x)f(x))e^{\lim_{x \to 0}(f(x) \cdot \ln(g(x)))} = \lim_{x \to 0}(g(x)^{f(x)}) if limx0(f(x)ln(g(x)))\lim_{x \to 0}(f(x) \cdot \ln(g(x))) exists. We will rewrite the expression in a form that allows us to apply this property.
  2. Rewrite Using Natural Logarithm: Let's rewrite the limit using the natural logarithm:\newlinelimx0(12x)1x=elimx0(1xln(12x))\lim_{x \to 0}(1-2x)^{\frac{1}{x}} = e^{\lim_{x \to 0}(\frac{1}{x} \cdot \ln(1-2x))}.\newlineNow we need to find the limit inside the exponent: limx0(1xln(12x))\lim_{x \to 0}(\frac{1}{x} \cdot \ln(1-2x)).
  3. Apply L'Hôpital's Rule: We can now apply L'Hôpital's Rule to the limit inside the exponent because it is an indeterminate form of type 0/00/0. To do this, we differentiate the numerator and the denominator separately:\newlineLet's find the derivative of the numerator, ln(12x)\ln(1-2x), with respect to xx: ddx[ln(12x)]=212x\frac{d}{dx}[\ln(1-2x)] = -\frac{2}{1-2x}.\newlineAnd the derivative of the denominator, 1/x1/x, with respect to xx: ddx[1/x]=1x2\frac{d}{dx}[1/x] = -\frac{1}{x^2}.
  4. Evaluate Limit: Now we apply L'Hôpital's Rule:\newlinelimx0(1xln(12x))=limx0(212x(x2))=limx0(2x212x)\lim_{x \to 0}(\frac{1}{x} \cdot \ln(1-2x)) = \lim_{x \to 0}(\frac{-2}{1-2x} \cdot (-x^2)) = \lim_{x \to 0}(\frac{2x^2}{1-2x}).\newlineWe can now evaluate this limit as xx approaches 00.
  5. Simplify Expression: Plugging in x=0x = 0 into the simplified expression 2x212x\frac{2x^2}{1-2x}, we get: 202120=01=0\frac{2\cdot 0^2}{1-2\cdot 0} = \frac{0}{1} = 0. So, limx0(1xln(12x))=0\lim_{x \to 0}(\frac{1}{x} \cdot \ln(1-2x)) = 0.
  6. Final Answer: Now that we have the limit of the exponent, we can go back to the original limit: limx0(12x)1x=elimx0(1xln(12x))=e0\lim_{x \to 0}(1-2x)^{\frac{1}{x}} = e^{\lim_{x \to 0}(\frac{1}{x} \cdot \ln(1-2x))} = e^0.
  7. Final Answer: Now that we have the limit of the exponent, we can go back to the original limit:\newlinelimx0(12x)1x=elimx0(1xln(12x))=e0\lim_{x \to 0}(1-2x)^{\frac{1}{x}} = e^{\lim_{x \to 0}(\frac{1}{x} \cdot \ln(1-2x))} = e^0.We know that e0=1e^0 = 1. Therefore, the final answer is:\newlinelimx0(12x)1x=1\lim_{x \to 0}(1-2x)^{\frac{1}{x}} = 1.

More problems from Sum of finite series not start from 1