Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr-3)(x^(3)+x^(2)-6x)/(x^(2)+3x)=

limx3x3+x26xx2+3x= \lim _{x \rightarrow-3} \frac{x^{3}+x^{2}-6 x}{x^{2}+3 x}=

Full solution

Q. limx3x3+x26xx2+3x= \lim _{x \rightarrow-3} \frac{x^{3}+x^{2}-6 x}{x^{2}+3 x}=
  1. Identify Function and Point: Identify the function and the point at which we need to find the limit.\newlineWe are given the function (x3+x26x)/(x2+3x)(x^3 + x^2 - 6x) / (x^2 + 3x) and we need to find its limit as xx approaches 3-3.
  2. Simplify if Possible: Simplify the function if possible.\newlineWe can factor both the numerator and the denominator to simplify the expression.\newlineNumerator: x3+x26x=x(x2+x6)x^3 + x^2 - 6x = x(x^2 + x - 6)\newlineDenominator: x2+3x=x(x+3)x^2 + 3x = x(x + 3)\newlineNow we factor the quadratic x2+x6x^2 + x - 6 in the numerator.\newlinex2+x6x^2 + x - 6 can be factored into (x+3)(x2)(x + 3)(x - 2).\newlineSo the function simplifies to:\newlinex(x+3)(x2)x(x+3)\frac{x(x + 3)(x - 2)}{x(x + 3)}
  3. Cancel Common Factors: Cancel out common factors.\newlineWe can cancel the common factor of xx and (x+3)(x + 3) from the numerator and the denominator.\newlineThis gives us:\newlinex21\frac{x - 2}{1}\newlineWhich simplifies to:\newlinex2x - 2
  4. Find Limit: Find the limit by direct substitution.\newlineNow that we have simplified the function, we can find the limit by substituting xx with 3-3.\newline(3)2=5(-3) - 2 = -5